MHB Noetherian Modules: ACC, Finite Ascending Chain Definition - Bland

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Paul E. Bland's book, "Rings and Their Modules".

I am trying to understand Chapter 4, Section 4.2 on Noetherian and Artinian modules and need help with the definition of a noetherian module - in particular I need help with the nature of an ascending chain of submodule ...

Definition 4.2.1 reads as follows:

View attachment 3668

As I mentioned above, my question relates to the nature of an ascending chain - in particular, how do we regard a finite ascending chain ... indeed, is there such a thing as a finite ascending chain of submodules? (Note that the definition reads as if every ascending chain is unending or infinite?)For example, if we have a chain consisting of two submodules:

$$M_1 \subseteq M_2 $$ (1)

How to we regard this? Is it a terminating ascending chain?

Do we in fact regard (1) as an infinite ascending chain, as shown:

$$M_1 \subseteq M_2 \subseteq M_3 \subseteq M_4 \subseteq \ ... \ ... \ ...$$

where $$M_2 = M_3 = M_4 = \ ... \ ... \ ... $$So, the (essentially finite) ascending chain terminates at $$M_2$$ ... ...

Can someone clarify the above? Is this the right way to think about a finite ascending chain of submodules?

Hope someone can help ... ...

Peter
 
Physics news on Phys.org
Hi Peter,

You can certainly speak of finite chains, and we have actually discussed this in the subject of modules of finite length. In any case, if in $(1)$, $M_1$ and $M_2$ are submodules of a module $M$, then the chain $M_1 \subset M_2$ can be viewed as the infinite ascending chain $M_1 \subset M_2 \subset M \subset M \subset \cdot$. You cannot always "reverse" this process, i.e., an infinite ascending chain may not be considered a finite chain. However, if you can always reverse this process in a module $M$, then $M$ is Noetherian.
 
Euge said:
Hi Peter,

You can certainly speak of finite chains, and we have actually discussed this in the subject of modules of finite length. In any case, if in $(1)$, $M_1$ and $M_2$ are submodules of a module $M$, then the chain $M_1 \subset M_2$ can be viewed as the infinite ascending chain $M_1 \subset M_2 \subset M \subset M \subset \cdot$. You cannot always "reverse" this process, i.e., an infinite ascending chain may not be considered a finite chain. However, if you can always reverse this process in a module $M$, then $M$ is Noetherian.
Most helpful, Euge .. ...

Thank you,

Peter
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top