MHB Non-dimensional differential equation 1

Click For Summary
A non-dimensional differential equation describes the height of a body thrown vertically upwards, given by d²x/dt² = -1 - μ(dx/dt) with initial conditions x(0)=0 and dx/dt(0)=1, where 0<μ<<1. The maximum height h(μ) is derived as h(μ) = 1/μ - (1/μ²) log_e(1+μ). The discussion involves solving this equation through integration, with a suggestion to use separation of variables. The first step involves substituting v = dx/dt and finding v as a function of time, leading to the expression v = (1/μ)((μ + 1)e^(-μt) - 1). The next steps include determining when v=0 to find the time at which the maximum height is reached.
ra_forever8
Messages
106
Reaction score
0
A body of constant mass is thrown vertically upwards from the ground. It can be shown that the appropriate non-dimensional differential equation for the height $x(t;u)$, reached at time $t\geq0$ is given by
\begin{equation} \frac{d^2x}{dt^2} = -1-\mu (\frac{dx}{dt})
\end{equation}
with corresponding initial conditions $x(0)=0, \frac{dx}{dt}(0) =1$, and where $0<\mu<<1.$
Deduce that the (non-dimensional) height at the highest point (where $\frac{dx}{dt} =0$) is given by
\begin{equation} h(\mu)= \frac{1}{\mu}- \frac{1}{\mu^2} log_e(1+\mu) \end{equation}

=>
It really hard for me to start

I was thinking do integration twice by doing the separation of variable:
\begin{equation} \frac{d^2x}{dt^2} = -1-\mu (\frac{dx}{dt})
\end{equation}
I got the general solution of \begin{equation}x(t)= \frac{log(t\mu +1) -t \mu}{\mu^2}\end{equation}

after that I do not know how to get the answer.
Please help me.
 
Mathematics news on Phys.org
Re: Non-dimensional differential equation

grandy said:
A body of constant mass is thrown vertically upwards from the ground. It can be shown that the appropriate non-dimensional differential equation for the height $x(t;u)$, reached at time $t\geq0$ is given by
\begin{equation} \frac{d^2x}{dt^2} = -1-\mu (\frac{dx}{dt})
\end{equation}
with corresponding initial conditions $x(0)=0, \frac{dx}{dt}(0) =1$, and where $0<\mu<<1.$
Deduce that the (non-dimensional) height at the highest point (where $\frac{dx}{dt} =0$) is given by
\begin{equation} h(\mu)= \frac{1}{\mu}- \frac{1}{\mu^2} log_e(1+\mu) \end{equation}

=>
It really hard for me to start

I was thinking do integration twice by doing the separation of variable:
\begin{equation} \frac{d^2x}{dt^2} = -1-\mu (\frac{dx}{dt})
\end{equation}
I got the general solution of \begin{equation}x(t)= \frac{log(t\mu +1) -t \mu}{\mu^2}\end{equation}

after that I do not know how to get the answer.
Please help me.

Your method is the right approach.

Let me show you the first step to find $v$.

Let $v=\frac {dx}{dt}$ and let $\dot v = \frac {d^2x}{dt^2}$.
Then:
\begin{array}{}
\dot v &=& -1 - \mu v \\
\frac{\dot v}{1 + \mu v} &=& -1 \\
\frac 1 \mu \ln(1+\mu v) &=& -t + C \\
v &=& C' e^{-\mu t} - \frac 1 \mu \\
\end{array}

Applying the boundary condition $v(0)=1$ yields:
$$v = \frac 1 \mu((\mu + 1)e^{-\mu t} - 1)$$

From here you can find the time $t$ at which $v=0$.
And you can also integrate again to find $x$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K