MHB Non-dimensional differential equation 1

AI Thread Summary
A non-dimensional differential equation describes the height of a body thrown vertically upwards, given by d²x/dt² = -1 - μ(dx/dt) with initial conditions x(0)=0 and dx/dt(0)=1, where 0<μ<<1. The maximum height h(μ) is derived as h(μ) = 1/μ - (1/μ²) log_e(1+μ). The discussion involves solving this equation through integration, with a suggestion to use separation of variables. The first step involves substituting v = dx/dt and finding v as a function of time, leading to the expression v = (1/μ)((μ + 1)e^(-μt) - 1). The next steps include determining when v=0 to find the time at which the maximum height is reached.
ra_forever8
Messages
106
Reaction score
0
A body of constant mass is thrown vertically upwards from the ground. It can be shown that the appropriate non-dimensional differential equation for the height $x(t;u)$, reached at time $t\geq0$ is given by
\begin{equation} \frac{d^2x}{dt^2} = -1-\mu (\frac{dx}{dt})
\end{equation}
with corresponding initial conditions $x(0)=0, \frac{dx}{dt}(0) =1$, and where $0<\mu<<1.$
Deduce that the (non-dimensional) height at the highest point (where $\frac{dx}{dt} =0$) is given by
\begin{equation} h(\mu)= \frac{1}{\mu}- \frac{1}{\mu^2} log_e(1+\mu) \end{equation}

=>
It really hard for me to start

I was thinking do integration twice by doing the separation of variable:
\begin{equation} \frac{d^2x}{dt^2} = -1-\mu (\frac{dx}{dt})
\end{equation}
I got the general solution of \begin{equation}x(t)= \frac{log(t\mu +1) -t \mu}{\mu^2}\end{equation}

after that I do not know how to get the answer.
Please help me.
 
Mathematics news on Phys.org
Re: Non-dimensional differential equation

grandy said:
A body of constant mass is thrown vertically upwards from the ground. It can be shown that the appropriate non-dimensional differential equation for the height $x(t;u)$, reached at time $t\geq0$ is given by
\begin{equation} \frac{d^2x}{dt^2} = -1-\mu (\frac{dx}{dt})
\end{equation}
with corresponding initial conditions $x(0)=0, \frac{dx}{dt}(0) =1$, and where $0<\mu<<1.$
Deduce that the (non-dimensional) height at the highest point (where $\frac{dx}{dt} =0$) is given by
\begin{equation} h(\mu)= \frac{1}{\mu}- \frac{1}{\mu^2} log_e(1+\mu) \end{equation}

=>
It really hard for me to start

I was thinking do integration twice by doing the separation of variable:
\begin{equation} \frac{d^2x}{dt^2} = -1-\mu (\frac{dx}{dt})
\end{equation}
I got the general solution of \begin{equation}x(t)= \frac{log(t\mu +1) -t \mu}{\mu^2}\end{equation}

after that I do not know how to get the answer.
Please help me.

Your method is the right approach.

Let me show you the first step to find $v$.

Let $v=\frac {dx}{dt}$ and let $\dot v = \frac {d^2x}{dt^2}$.
Then:
\begin{array}{}
\dot v &=& -1 - \mu v \\
\frac{\dot v}{1 + \mu v} &=& -1 \\
\frac 1 \mu \ln(1+\mu v) &=& -t + C \\
v &=& C' e^{-\mu t} - \frac 1 \mu \\
\end{array}

Applying the boundary condition $v(0)=1$ yields:
$$v = \frac 1 \mu((\mu + 1)e^{-\mu t} - 1)$$

From here you can find the time $t$ at which $v=0$.
And you can also integrate again to find $x$.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top