MHB Non-linear differential equation

Poirot1
Messages
243
Reaction score
0
system is $x'=y+xf(r^2)$ and $y'=-x+yf(r^2)$. where $r^2=x^2+y^2$

(i) prove that $\frac{dr^2}/{dt}=2r^2f(r^2)$. My solution ( I won't write out details): use chain rule and the fact that rr'=xx'+yy'.

(ii)assume $f(r^2)$ has N zeroes. determine the number of fixed points and periodic solutions the system has and write about the stability of fixed points.

This one I think I did the first (I will give details) but can't do the others

Solution: $r^2{\theta}'=xy'-yx'$and if (x,y) is fixed point, then xy'-yx'=0. If you work this out you get fixed point implies -r^2=0 so x=y=0 is only fixed point. In the solution however it has a different justification, namely that ${\theta}'=-1$ but I don't understand how this means (0,0) is only fixed point.
 
Physics news on Phys.org
You already know that x'= y+ xf(r^2) and y'= -x+ yf(r^2) so that xy'- yx'= x(-x+ yf(r^2))- y(y+ xf(r^2)= -x^2+ xyf(r^2)- (y^2+ xyf(r^2)= -(x^2+y^2)= -r^2= 0 if and only if r= 0.
 
ok what about the question about periodic solutions
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...

Similar threads

Back
Top