MHB Non-linear differential equation

Click For Summary
The discussion centers on a non-linear differential equation system defined by x' = y + x f(r^2) and y' = -x + y f(r^2), where r^2 = x^2 + y^2. The first part involves proving that dr^2/dt = 2r^2 f(r^2) using the chain rule and the relationship between r and its derivatives. The second part addresses the determination of fixed points and periodic solutions, revealing that (0,0) is the only fixed point, as derived from the condition xy' - yx' = 0. The discussion also touches on the stability of fixed points and the implications of f(r^2) having N zeroes, although the specifics of periodic solutions remain unresolved. Overall, the analysis highlights the complexities of the system's dynamics and the significance of the fixed point at the origin.
Poirot1
Messages
243
Reaction score
0
system is $x'=y+xf(r^2)$ and $y'=-x+yf(r^2)$. where $r^2=x^2+y^2$

(i) prove that $\frac{dr^2}/{dt}=2r^2f(r^2)$. My solution ( I won't write out details): use chain rule and the fact that rr'=xx'+yy'.

(ii)assume $f(r^2)$ has N zeroes. determine the number of fixed points and periodic solutions the system has and write about the stability of fixed points.

This one I think I did the first (I will give details) but can't do the others

Solution: $r^2{\theta}'=xy'-yx'$and if (x,y) is fixed point, then xy'-yx'=0. If you work this out you get fixed point implies -r^2=0 so x=y=0 is only fixed point. In the solution however it has a different justification, namely that ${\theta}'=-1$ but I don't understand how this means (0,0) is only fixed point.
 
Physics news on Phys.org
You already know that x'= y+ xf(r^2) and y'= -x+ yf(r^2) so that xy'- yx'= x(-x+ yf(r^2))- y(y+ xf(r^2)= -x^2+ xyf(r^2)- (y^2+ xyf(r^2)= -(x^2+y^2)= -r^2= 0 if and only if r= 0.
 
ok what about the question about periodic solutions
 

Similar threads

  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
554