I know that this function [itex] f : [-2,2] \to \mathbb{R} [/itex](adsbygoogle = window.adsbygoogle || []).push({});

[itex] f(x) = \begin{cases} 1 & \textrm{ if } x \geq 0 \\ 0 & \textrm{ if } x < 0 \end{cases} [/itex]

is not Riemann-Stieltjes integrable with itself (that is, taking [itex] g = f [/itex] then [itex] f \not\in R(g) [/itex])

That is because both share a point of discontinuity, namely 0.

What I don't know is how do I justify this? for wich partition does the limit of the superior sums and the inferior sums don't equal? Shouldn't this integral be equal to 1? (all the terms in the sum cancel except at zero, where [itex] \triangle g = 1-0 = 1 [/itex], and [itex] f(0) = 1[/itex]

I think I'm not seeing it correctly.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Non Stieltjes integrable function

Loading...

Similar Threads for Stieltjes integrable function |
---|

I How to derive this log related integration formula? |

I An integration Solution |

B I Feel Weird Using Integral Tables |

B Methods of integration: direct and indirect substitution |

A Getting a finite result from a non-converging integral |

**Physics Forums | Science Articles, Homework Help, Discussion**