Undergrad Nonlinear Second Order ODE: Can We Find an Analytical Solution?

Click For Summary
The discussion centers on solving a nonlinear second order ODE of the form $$\frac{d^2y}{dx^2}+\frac{1}{x}\frac{dy}{dx}-\frac{y}{ay+b}=0$$ where ##a## and ##b## are constants. It is noted that for the cases where ##b=0, a\neq 0## and ##a=0, b\neq 0##, analytical solutions exist, transforming the ODE into linear forms. However, the challenge lies in finding an analytical solution when both ##a## and ##b## are non-zero, as the nonlinear nature complicates the problem. Transformations, such as setting ##x=e^t##, have been attempted but have not yielded successful results. The discussion highlights the need for further strategies to tackle the more complex cases of the ODE.
tse8682
Messages
30
Reaction score
1
I'm trying to solve the following nonlinear second order ODE where ##a## and ##b## are constants: $$\frac{d^2y}{dx^2}+\frac{1}{x}\frac{dy}{dx}-\frac{y}{ay+b}=0$$ It looks somewhat like the modified Bessel equation, except the third term on the left makes it nonlinear. I've been trying to determine some way to find an analytical solution but haven't been able to come up with anything. It doesn't help much but it can also be written:$$\frac{1}{x}\frac{d}{dx}\left(x\frac{dy}{dx}\right)=\frac{y}{ay+b}$$Any suggestions would be greatly appreciated, thanks!
 
Physics news on Phys.org
Looks like for the case that ##b=0,a\neq 0## there is the analytical solution because then the ODE becomes linear with non constant coefficients (and I think the solution is a polynomial of 2nd order).

The case that ##a=0,b\neq 0## also seems to fallback to linear ODE as well so there should be an analytical solution.

But I am all out of ideas how to effectively treat the case ##a,b\neq 0##.
 
Last edited:
Delta2 said:
Looks like for the case that ##b=0,a\neq 0## there is the analytical solution because then the ODE becomes linear with non constant coefficients (and I think the solution is a polynomial of 2nd order).

The case that ##a=0,b\neq 0## also seems to fallback to linear ODE as well so there should be an analytical solution.

But I am all out of ideas how to effectively treat the case ##a,b\neq 0##.

Yeah, if ##b=0,a\neq 0## then the solution is ##y=\frac{x^2}{4a}+C_1\ln{x}+C_2##. If ##a=0,b\neq 0##, then it becomes the modified Bessel equation of order zero and the solution is ##y=C_1I_0\left(\frac{x}{\sqrt{b}}\right)+C_2K_0\left(\frac{x}{\sqrt{b}}\right)##.

It can be transformed if ##x=e^t## so ##t=\ln{x}##. With that it becomes: $$\frac{d^2y}{dt^2}=\frac{e^{2t}y}{ay+b}$$ They have another transformation here for equations that kinda look like that but I haven't been able to get that transformation to work.
 
  • Like
Likes Delta2

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K