MHB Normal Extensions and Normal Subgroups

  • Thread starter Thread starter Kiwi1
  • Start date Start date
  • Tags Tags
    Normal
Kiwi1
Messages
106
Reaction score
0
View attachment 5929

I have answered Q1-Q3. I am unsure of my answer for Q4 and am stuck on Q5.

Notation: \(I^*=Gal(K:I)\). That is the subgroup of G=Gal(K:F) that fixes I.

Q4.
I2 is conjugate to I1.
iff \(\exists i \in G:I_2=i(I_1)\)
iff \( I^*_2=[i(I_1)]^*=iI_1^*i^{-1}\) by Q3.
iff \( I^*_2=iI_1^*i^{-1}\)
iff \( I^*_2=\phi_i(I_1^*)\) where \(\phi_i\) is the function conjugate by i.
iff \(I_1^*\) is conjugate to \(I_2^*\)

Q5. I have lots of ideas but keep going in circles.
Suppose \(I_2\) is a normal extension of \(I_1\) then

\(I_2\) is the root field of some a(x) over \(I_1\)

and we have the isomorphism \(\phi \) defined by:

\(I_2 \cong \frac{I_1[x]}{<a(x)>}\)

Now I gloss over the fact that phi is an isomorphism when I need an automorphism. I take phi to mean that I_1 and I_2 are conjugate. Therefore using Q4 \(I^*_2\) and the fixer of the RHS of my isomorphism are conjugate. That is there exists an automorphism pi such that:

\(I_2^* \cong \left(\frac{I_1[x]}{<a(x)>}\right)^*\)

again I am glossing over the difference between isomorphism and automorphism.

Now since these two fixers are conjugate I can write

there exists \(x \in I_1\) such that \(I^*_2 \cong x \left(\frac{I_1[x]}{<a(x)>}\right)^* x^{-1}\)

Now x and \(x^{-1}\) both fix the coefficients of a(x) and \(I_1^*[x]\) so:

there exists \(x \in I_1\) such that \(I^*_2 \cong \left(\frac{I_1[x]}{<a(x)>}\right)^* \)

So \(I^*_2\) is a normal subgroup of \(I^*_1\)

I know I have 'cheated' at various points but am I on the right track to finding a solution? I need to reverse the order of my argument so that this argument complements Q1.
 

Attachments

  • alg.png
    alg.png
    36.9 KB · Views: 150
Last edited:
Physics news on Phys.org
Solved it!

Suppose \(I_2\) is a normal extension of \(I_1\). Then there exists a(x) such that:

\(I_2 \cong \frac{I_1[x]}{<a(x)>} \supseteq I_1\). Now this isomorphism fixes \(I_1\) so by Theorem (i) the isomorphism is in fact an automorphism.

So by problem 4:
\(I_2^* \cong \left(\frac{I_1[x]}{<a(x)>}\right)^* \subseteq I_1^*\) is an automorphism so:

\(I_2^* \subseteq I_1^*\) and \(I_2^* = \left(\frac{I_1[x]}{<a(x)>}\right)^*\)

but is \(I_2^*\) a NORMAL subgroup?

Let \(\pi\) be any \(\pi \in I_1^*\) then

\(\pi I_2^* \pi^{-1} = \pi \left(\frac{I_1[x]}{<a(x)>}\right)^* \pi^{-1}= \left( \pi \left(\frac{I_1[x]}{<a(x)>}\right)\right)^* \) (using problem 3)

but \(\pi\) fixes all \(I_1\) and therefore fixes the coefficients of \(I_1[x]\) and a(x), therefore:

\(\pi I_2^* \pi^{-1} = \left(\frac{I_1[x]}{<a(x)>}\right)^* = I_2^*\)

so indeed \(I_2^*\) a NORMAL subgroup of \(I_1^*\). The reverse direction follows directly from Question 1.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
14K
  • · Replies 6 ·
Replies
6
Views
4K
Replies
14
Views
4K
  • · Replies 8 ·
Replies
8
Views
6K
Replies
2
Views
2K