MHB Normal series and composition series

Click For Summary
A normal series for the dihedral group $D_4$ is established as $D_4 \geq \langle s \rangle \geq 1$, with $\langle s \rangle$ being a normal subgroup of index 2. The composition series identified includes $1 \leq \langle s^2 \rangle \leq \langle s \rangle \leq D_4$ and several others derived from different subgroups of order 4, such as $\langle a, s^2 \rangle$ and $\langle s^2, as \rangle$. To find all composition series, one must identify every subgroup of $D_4$ of index 2 and their respective subgroups of index 2, leading to a total of seven distinct composition series. The discussion confirms the validity of the identified series and emphasizes the importance of subgroup structure in determining composition series.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I want to find a normal series of $D_4$ and all the composition series for $D_4$.

I have done the following:

$D_4=\langle a , s\mid s^4=1=a^2, asa=s^{-1}\rangle$

A subgroup of $D_4$ is $\langle s\rangle=\{s, s^2, s^3, s^4=1\}$, that is normal in $D_4$, since $[D_4:\langle s\rangle]=\frac{|D_4|}{|\langle s\rangle|}=2$.

Therefore a normal series of $D_4$ is $$D_4\geq \langle s\rangle \geq 1$$ A composition series for $D_4$ is $$1=S_0\leq S_1\leq S_2\leq \dots \leq S_k=D_4$$ where $S_i\trianglelefteq S_{i+1}$ and $S_{i+1}/S_i$ is a simple group.

A subgroup of $D_4$ is $\langle s\rangle$. We have that $|D_4/\langle s\rangle |=\frac{|D_4|}{\langle s\rangle |}=2$.
Since the order of the quotient is the prime $2$, the group $D_4/\langle s\rangle$ is simple, and $\langle s\rangle \trianglelefteq D_4$.

A subgroup of $\langle s\rangle$ is $\langle s^2\rangle=\{s^2, s^4=1\}$. We have that $|\langle s\rangle/\langle s^2\rangle |=\frac{|\langle s\rangle |}{\langle s^2\rangle |}=2$.
Since the order of the quotient is the prime $2$, the group $\langle s\rangle /\langle s^2\rangle$ is simple, and $\langle s^2\rangle \trianglelefteq \langle s\rangle$.

We have that $|\langle s^2\rangle /1|=|\langle s^2\rangle |=2$, so $\langle s^2\rangle$ is simple and $1 \trianglelefteq \langle s^2\rangle$.

Therefore, a composition series for $D_4$ is $$1\leq \langle s^2\rangle \leq \langle s\rangle \leq D_4$$ right? (Wondering)

But how can we find all the composition series? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

I want to find a normal series of $D_4$ and all the composition series for $D_4$.

I have done the following:

$D_4=\langle a , s\mid s^4=1=a^2, asa=s^{-1}\rangle$

A subgroup of $D_4$ is $\langle s\rangle=\{s, s^2, s^3, s^4=1\}$, that is normal in $D_4$, since $[D_4:\langle s\rangle]=\frac{|D_4|}{|\langle s\rangle|}=2$.

Therefore a normal series of $D_4$ is $$D_4\geq \langle s\rangle \geq 1$$ A composition series for $D_4$ is $$1=S_0\leq S_1\leq S_2\leq \dots \leq S_k=D_4$$ where $S_i\trianglelefteq S_{i+1}$ and $S_{i+1}/S_i$ is a simple group.

A subgroup of $D_4$ is $\langle s\rangle$. We have that $|D_4/\langle s\rangle |=\frac{|D_4|}{\langle s\rangle |}=2$.
Since the order of the quotient is the prime $2$, the group $D_4/\langle s\rangle$ is simple, and $\langle s\rangle \trianglelefteq D_4$.

A subgroup of $\langle s\rangle$ is $\langle s^2\rangle=\{s^2, s^4=1\}$. We have that $|\langle s\rangle/\langle s^2\rangle |=\frac{|\langle s\rangle |}{\langle s^2\rangle |}=2$.
Since the order of the quotient is the prime $2$, the group $\langle s\rangle /\langle s^2\rangle$ is simple, and $\langle s^2\rangle \trianglelefteq \langle s\rangle$.

We have that $|\langle s^2\rangle /1|=|\langle s^2\rangle |=2$, so $\langle s^2\rangle$ is simple and $1 \trianglelefteq \langle s^2\rangle$.

Therefore, a composition series for $D_4$ is $$1\leq \langle s^2\rangle \leq \langle s\rangle \leq D_4$$ right? (Wondering)

But how can we find all the composition series? (Wondering)

8 is a power of two, that should be a BIG clue, right there.

So find the "other" subgroups of order 4 (there are two more).
 
Deveno said:
8 is a power of two, that should be a BIG clue, right there.

What information do we get from that? (Wondering)
Deveno said:
So find the "other" subgroups of order 4 (there are two more).

The other two subgroups of order $4$ are $\langle a, s^2\rangle=\{a, s^2, as^2, 1\}$ and $\langle s^2, as\rangle=\{s^2, as, as^3, 1\}$, right? (Wondering)
 
mathmari said:
What information do we get from that? (Wondering)

The only ways we can go down is by "halfsies". (All the factor groups in a composition series will have order 2).

The other two subgroups of order $4$ are $\langle a, s^2\rangle=\{a, s^2, as^2, 1\}$ and $\langle s^2, as\rangle=\{s^2, as, as^3, 1\}$, right? (Wondering)

Mhm...so each of these looks promising as the start of a composition series...do you think you can take them "all the way"?
 
Deveno said:
The only ways we can go down is by "halfsies". (All the factor groups in a composition series will have order 2).

When we had a group of order a power of $3$, all the factor groups in a composition series would have order $3$, right? (Wondering)

In post #1 all the factor groups in $1\leq \langle s^2\rangle \leq \langle s\rangle \leq D_4$ have order $2$, right? (Wondering)

Why isn't this a composition series? (Wondering)
Deveno said:
do you think you can take them "all the way"?

What do you mean? (Wondering)
 
mathmari said:
When we had a group of order a power of $3$, all the factor groups in a composition series would have order $3$, right? (Wondering)

In post #1 all the factor groups in $1\leq \langle s^2\rangle \leq \langle s\rangle \leq D_4$ have order $2$, right? (Wondering)

Why isn't this a composition series? (Wondering)

Who said it wasn't?


What do you mean? (Wondering)

I mean keep going.
 
So are the following some the composition series?

$$1\leq \langle s^2\rangle \leq \langle s\rangle \leq D_4 \\ 1\leq \langle s^2\rangle \leq \langle s^2, a\rangle \leq D_4 \\ 1\leq \langle s^2\rangle \leq \langle s^2, as\rangle \leq D_4 $$

Other subgroups of order $2$ are $\langle a\rangle=\{a, a^2=1\}$, $\langle as^2\rangle=\{as^2, 1\}$, $\langle as^3\rangle=\{as^3, 1\}$, $\langle as\rangle=\{as, 1\}$.

Therefore, other composition series are the following:

$$1\leq \langle a\rangle \leq \langle s^2, a\rangle \leq D_4 \\ 1\leq \langle as^2\rangle \leq \langle s^2, a\rangle \leq D_4 \\ 1\leq \langle as^3\rangle \leq \langle s^2, as\rangle \leq D_4 \\ 1\leq \langle as\rangle \leq \langle s^2, as\rangle \leq D_4$$
right? (Wondering)

How do we know if we have found all composition series? (Wondering)
 
Last edited by a moderator:
mathmari said:
So are the following some the composition series?

$$1\leq \langle s^2\rangle \leq \langle s\rangle \leq D_4 \\ 1\leq \langle s^2\rangle \leq \langle s^2, a\rangle \leq D_4 \\ 1\leq \langle s^2\rangle \leq \langle s^2, as\rangle \leq D_4 $$

Other subgroups of order $2$ are $\langle a\rangle=\{a, a^2=1\}$, $\langle as^2\rangle=\{as^2, 1\}$, $\langle as^3\rangle=\{as^3, 1\}$, $\langle as\rangle=\{as, 1\}$.

Therefore, other composition series are the following:

$$1\leq \langle a\rangle \leq \langle s^2, a\rangle \leq D_4 \\ 1\leq \langle as^2\rangle \leq \langle s^2, a\rangle \leq D_4 \\ 1\leq \langle as^3\rangle \leq \langle s^2, as\rangle \leq D_4 \\ 1\leq \langle as\rangle \leq \langle s^2, as\rangle \leq D_4$$
right? (Wondering)

How do we know if we have found all composition series? (Wondering)

Basically, to find them all, all you need to do is find every subgroup of $D_4$ of index 2, and every subgroup of those subgroups of index 2.

There are 3 subgroups of index 2, one is cyclic, and two are isomorphic to $V$, the Klein 4-group.

There is only one composition series for the cyclic subgroup of index 2.

Each of the other subgroups isomorphic to $V$ yield 3 composition series each (one for each element of order 2 they contain).

That gives 7 in all. You've listed 7, so those are them.
 
Deveno said:
Basically, to find them all, all you need to do is find every subgroup of $D_4$ of index 2, and every subgroup of those subgroups of index 2.

There are 3 subgroups of index 2, one is cyclic, and two are isomorphic to $V$, the Klein 4-group.

There is only one composition series for the cyclic subgroup of index 2.

Each of the other subgroups isomorphic to $V$ yield 3 composition series each (one for each element of order 2 they contain).

That gives 7 in all. You've listed 7, so those are them.

Great! Thank you very much! (Happy)
 

Similar threads

  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 21 ·
Replies
21
Views
1K
Replies
7
Views
2K
Replies
0
Views
992
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
846
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
6
Views
2K