Math Amateur
Gold Member
MHB
- 3,920
- 48
I am reading D.G. Northcott's book: Lessons on Rings and Modules and Multiplicities.
I am currently studying Chapter 2: Prime Ideals and Primary Submodules.
I need help with a result that Northcott quotes and proves on page 80 regarding sums and products of ideals.
The relevant text from Northcott reads as follows:
View attachment 3729
In the above text we read:
" ... ... Accordingly
$$ A_i B_j \subseteq (A_1 + A_2 + \ ... \ + A_m ) ( B_1 + B_2 + \ ... \ + B_n ) $$
and therefore
$$ \sum_{i,j} A_i B_j \subseteq (A_1 + A_2 + \ ... \ + A_m ) ( B_1 + B_2 + \ ... \ + B_n ) $$ ... ... "Can someone explain (formally and rigorously) exactly why it follows that:
$$\sum_{i,j} A_i B_j \subseteq (A_1 + A_2 + \ ... \ + A_m ) ( B_1 + B_2 + \ ... \ + B_n )$$ ... ... ?Hope someone can help ...
Peter
I am currently studying Chapter 2: Prime Ideals and Primary Submodules.
I need help with a result that Northcott quotes and proves on page 80 regarding sums and products of ideals.
The relevant text from Northcott reads as follows:
View attachment 3729
In the above text we read:
" ... ... Accordingly
$$ A_i B_j \subseteq (A_1 + A_2 + \ ... \ + A_m ) ( B_1 + B_2 + \ ... \ + B_n ) $$
and therefore
$$ \sum_{i,j} A_i B_j \subseteq (A_1 + A_2 + \ ... \ + A_m ) ( B_1 + B_2 + \ ... \ + B_n ) $$ ... ... "Can someone explain (formally and rigorously) exactly why it follows that:
$$\sum_{i,j} A_i B_j \subseteq (A_1 + A_2 + \ ... \ + A_m ) ( B_1 + B_2 + \ ... \ + B_n )$$ ... ... ?Hope someone can help ...
Peter