MHB Northcott - Sums and Products of Ideals

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Sums
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading D.G. Northcott's book: Lessons on Rings and Modules and Multiplicities.

I am currently studying Chapter 2: Prime Ideals and Primary Submodules.

I need help with a result that Northcott quotes and proves on page 80 regarding sums and products of ideals.

The relevant text from Northcott reads as follows:

View attachment 3729

In the above text we read:

" ... ... Accordingly

$$ A_i B_j \subseteq (A_1 + A_2 + \ ... \ + A_m ) ( B_1 + B_2 + \ ... \ + B_n ) $$

and therefore

$$ \sum_{i,j} A_i B_j \subseteq (A_1 + A_2 + \ ... \ + A_m ) ( B_1 + B_2 + \ ... \ + B_n ) $$ ... ... "Can someone explain (formally and rigorously) exactly why it follows that:

$$\sum_{i,j} A_i B_j \subseteq (A_1 + A_2 + \ ... \ + A_m ) ( B_1 + B_2 + \ ... \ + B_n )$$ ... ... ?Hope someone can help ...

Peter
 
Physics news on Phys.org
Hi Peter,

The reason why it follows that $\sum_{i,j} A_iB_j \subseteq (A_1 + \cdots + A_m)(B_1 + \cdots + B_n)$ is that $(A_1 + \cdots + A_m)(B_1 + \cdots B_n)$ is closed under addition. Remember, the product of two ideals of a ring is an ideal, so in particular, it is closed under addition. Also note that (finite) sum of ideals of a ring is an ideal -- that's why $A_1 + \cdots + A_m$ and $B_1 + \cdots + B_m$ are ideals of $R$.
 
Euge said:
Hi Peter,

The reason why it follows that $\sum_{i,j} A_iB_j \subseteq (A_1 + \cdots + A_m)(B_1 + \cdots + B_n)$ is that $(A_1 + \cdots + A_m)(B_1 + \cdots B_n)$ is closed under addition. Remember, the product of two ideals of a ring is an ideal, so in particular, it is closed under addition. Also note that (finite) sum of ideals of a ring is an ideal -- that's why $A_1 + \cdots + A_m$ and $B_1 + \cdots + B_m$ are ideals of $R$.
Thanks Euge,

Yes, follow that ... most clear and helpful ...

Thanks again,

Peter
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top