MHB Not all the roots are real iff a^2_1<a_2

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Roots
Click For Summary
The equation presented is a polynomial with real coefficients, specifically structured as \(x^n + a_1x^{n-1} + a_2x^{n-2} + \ldots + a_n = 0\), where it is established that \(a_1^2 < a_2\). By applying Newton's identities, the sum of the squares of the roots, \(x_1^2 + x_2^2 + \ldots + x_n^2\), is equal to \(a_1^2 - a_2\). Since \(a_1^2 < a_2\), this sum is negative, indicating that not all roots can be real, as the sum of squares of real numbers must be non-negative. The conclusion drawn is that the condition \(a_1^2 < a_2\) ensures the existence of non-real roots in the polynomial.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Given the equation
$$x^n + a_1x^{n-1}+a_2x^{n-2}+…+a_n = 0$$
- with real coefficients, and $a_1^2 < a_2$.

Show that not all the roots are real.
 
Mathematics news on Phys.org
lfdahl said:
Given the equation
$$x^n + a_1x^{n-1}+a_2x^{n-2}+…+a_n = 0$$
- with real coefficients, and $a_1^2 < a_2$.

Show that not all the roots are real.
[sp]If the roots are $x_1,x_2,\ldots,x_n$ then by one of Newton's identities $x_1^2 + x_2^2 + \ldots + x_n^2 = a_1^2 - a_2$. If all the roots are real then the sum of their squares would have to be positive. But if $a_1^2 < a_2$ then that sum is negative. So not all the roots can be real.

[/sp]
 
Opalg said:
[sp]If the roots are $x_1,x_2,\ldots,x_n$ then by one of Newton's identities $x_1^2 + x_2^2 + \ldots + x_n^2 = a_1^2 - a_2$. If all the roots are real then the sum of their squares would have to be positive. But if $a_1^2 < a_2$ then that sum is negative. So not all the roots can be real.

[/sp]

Thankyou, Opalg, for your participation. Your solution is - of course - correct.(Cool)
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
14
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K