MHB Not quite convinced of this proposition i need to prove....

  • Thread starter Thread starter skate_nerd
  • Start date Start date
skate_nerd
Messages
174
Reaction score
0
I am given that \(m\) and \(n\) are non zero integers and that \(S=\{k\in N:\,k=mx+ny\) for some integers \(x\) and \(y\}\). (Side note: How do you type the double struck capital N for the set of natural numbers in LaTeX?)
I need to prove that \(S\) is non-empty.

Well I am kind of stuck here thinking that if you had \(x=y=0\) then \(k=0\) making \(k\) not defined in the natural numbers, therefore leaving \(S\) to be none other than the empty set.
 
Physics news on Phys.org
Re: not quite convinced of this proposition i need to prove...

skatenerd said:
...(Side note: How do you type the double struck capital N for the set of natural numbers in LaTeX?)...

Use the code:

\mathbb{N}

to get:

$$\mathbb{N}$$
 
Re: not quite convinced of this proposition i need to prove...

skatenerd said:
I am given that \(m\) and \(n\) are non zero integers and that \(S=\{k\in N:\,k=mx+ny\) for some integers \(x\) and \(y\}\). I need to prove that \(S\) is non-empty.

Well I am kind of stuck here thinking that if you had \(x=y=0\) then \(k=0\) making \(k\) not defined in the natural numbers, therefore leaving \(S\) to be none other than the empty set.
For given $m$ and $n$, the set $S$ is formed by numbers of the form $mx+ny$ for all possible integer $x$ and $y$, not just $x=y=0$. Even if $0\notin\mathbb{N}$ (which differs according to different conventions). there are other $x$ and $y$ that produce positive integers.
 
So you're thinking that when it says "for some integers \(x\) and \(y\)" it means all different possible values?
 
skatenerd said:
So you're thinking that when it says "for some integers \(x\) and \(y\)" it means all different possible values?
Yes, it may seem a little counterintuitive. The phrase
\[
k\in S\iff k=mx+ny\text{ for some integers }x\text{ and }y
\]
means
\[
k\in S\iff(\exists x,y,\,k=mx+ny)
\]
In particular,
\[
(\exists x,y,\,k=mx+ny) \implies k\in S
\]
which is logically equivalent to
\[
\forall x,y,\,(k=mx+ny\implies k\in S)
\]
or
\[
\forall x,y,\,mx+ny\in S.
\]
So, if we say that some object $x$ is interesting iff $P(x,y)$ holds for some $y$, it means that every pair $(x,y)$ satisfying $P$ gives rise to an interesting $x$.
 
Ahhh okay thank you. That was very helpful.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top