I Null energy condition constrains the metric

  • I
  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    Metric Riemann
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Another GR question... in the thick of revision season. I would appreciate a sketch of how to approach the problem.

You basically are given a metric, involving a positive function ##A(z)##, $$g = A(z)^2(-dt^2 + dx^2 + dy^2) + dz^2$$The game is to figure out somehow that the null-energy condition is satisfied if$$\frac{d^2}{dz^2} \log A(z) \leq 0$$I obtained the Riemann components using the tetrad formalism with the basis ##(A dt, A dx, A dy, dz)##. You get non-zero connection 1-forms ##{\omega^0}_3 = A^{-1} A' e^0##, then ##{\omega^1}_3 = A^{-1} A' e^1## and ##{\omega^2}_3 = A^{-1} A' e^2##. You then get the curvature 2-forms from ##{\Theta^{\mu}}_{\nu} = {d\omega^{\mu}}_{\nu} + {\omega^{\mu}}_{\rho} \wedge {\omega^{\rho}}_{\nu}##, and I read off the Riemann components via ##{\Theta^{\mu}}_{\nu} = \tfrac{1}{2} {R^{\mu}}_{\nu \rho \sigma} e^{\rho} \wedge e^{\sigma}## as:\begin{align*}
{R^{0}}_{303} &= {R^{1}}_{313} = {R^{2}}_{323} = \frac{A''}{A} \\
{R^{0}}_{202} &= {R^{0}}_{101} = {R^{1}}_{212} = - \left( \frac{A'}{A} \right)^2
\end{align*}
OK... so assuming these are correct, you need to figure out how to ensure that ##T_{ab} k^a k^b \geq 0## for any null vector ##k##. In principle you can use these components to construct the energy-momentum tensor in the tetrad basis via ##T_{\mu \nu} = (8\pi)^{-1} (R_{\mu \nu} - \tfrac{1}{2} R \eta_{\mu \nu})##, but this will take a bit more work.

Then, due to symmetry in x-y, I can rotate the x-y components of the null vector so that it takes the components ##k^{\mu} = (k^0, k^1, 0, k^3)## again in the tetrad basis, and there is the null constraint ##\eta_{\mu \nu} k^{\mu} k^{\nu} = -(k^0)^2 + (k^1)^2 + (k^3)^2 = 0## that I can use to consider only two independent components.

Is the way forward to go ahead with computing all of the matrix elements ##T_{\mu \nu}##, and then forming a system of equations? It seems like there must be a better approach.
 
Physics news on Phys.org
ergospherical said:
the null constraint ##\eta_{\mu \nu} k^{\mu} k^{\nu} = -(k^0)^2 + (k^1)^2 + (k^3)^2 = 0##
No, the null constraint is ##g_{\mu \nu} k^\mu k^\nu = 0##, which means ##- A^2 (k^0)^2 + A^2 (k^1)^2 + (k^3)^2 = 0##.

ergospherical said:
Is the way forward to go ahead with computing all of the matrix elements ##T_{\mu \nu}##, and then forming a system of equations?
Maxima should be able to crank out the Einstein tensor of the metric. I would expect you will find that it does not have many nonzero components, which will simplify things.
 
PeterDonis said:
No, the null constraint is ##g_{\mu \nu} k^\mu k^\nu = 0##, which means ##- A^2 (k^0)^2 + A^2 (k^1)^2 + (k^3)^2 = 0##.
The ##k^{\mu}## are here in the tetrad basis, so we use the Lorentz metric ##\eta##.
 
ergospherical said:
The ##k^{\mu}## are here in the tetrad basis, so we use the Lorentz metric ##\eta##.
So that means the factors of ##A## appear in the components. They have to appear somewhere.
 
Well, indeed, but I did specify that I'm working entirely in the tetrad basis. (This choice obviously simplifies things because I already have the Riemann components in the tetrad basis).
 
ergospherical said:
\begin{align*}
{R^{0}}_{303} &= {R^{1}}_{313} = {R^{2}}_{323} = \frac{A''}{A} \\
{R^{0}}_{202} &= {R^{0}}_{101} = {R^{1}}_{212} = - \left( \frac{A'}{A} \right)^2
\end{align*}
These look a lot like the terms you get when you expand out ##d^2 / dz^2 ( \log A(z) )##. That should be helpful.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...

Similar threads

Replies
7
Views
957
Replies
9
Views
1K
Replies
2
Views
1K
Replies
4
Views
1K
Replies
10
Views
1K
Back
Top