Null energy condition constrains the metric

  • Context: Undergrad 
  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    Metric Riemann
Click For Summary

Discussion Overview

The discussion revolves around the application of the null energy condition in general relativity, specifically in the context of a given metric involving a positive function ##A(z)##. Participants explore how to demonstrate that the null energy condition is satisfied under the condition that the second derivative of the logarithm of ##A(z)## is non-positive. The focus includes mathematical reasoning and technical explanations related to the curvature components derived from the metric.

Discussion Character

  • Technical explanation, Mathematical reasoning, Debate/contested

Main Points Raised

  • One participant outlines the process of obtaining Riemann components using the tetrad formalism and presents specific curvature components derived from the metric.
  • Another participant corrects the interpretation of the null constraint, emphasizing that it should be expressed in terms of the metric ##g_{\mu \nu}## rather than the Lorentz metric ##\eta##.
  • There is a suggestion that using Maxima could simplify the computation of the Einstein tensor, potentially revealing fewer non-zero components.
  • Participants discuss the implications of working in the tetrad basis and how this choice affects the appearance of factors of ##A## in the components.
  • One participant notes that the curvature terms resemble those obtained when expanding the second derivative of ##\log A(z)##, suggesting a potential connection to the null energy condition.

Areas of Agreement / Disagreement

Participants express differing views on the correct formulation of the null constraint and its implications for the energy-momentum tensor. There is no consensus on the best approach to proceed with the calculations, indicating ongoing debate and exploration of the topic.

Contextual Notes

The discussion highlights the complexity of deriving the energy-momentum tensor from the curvature components and the assumptions involved in using the tetrad formalism. There are unresolved aspects regarding the simplifications that may arise from the choice of basis and the implications for the null energy condition.

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
Another GR question... in the thick of revision season. I would appreciate a sketch of how to approach the problem.

You basically are given a metric, involving a positive function ##A(z)##, $$g = A(z)^2(-dt^2 + dx^2 + dy^2) + dz^2$$The game is to figure out somehow that the null-energy condition is satisfied if$$\frac{d^2}{dz^2} \log A(z) \leq 0$$I obtained the Riemann components using the tetrad formalism with the basis ##(A dt, A dx, A dy, dz)##. You get non-zero connection 1-forms ##{\omega^0}_3 = A^{-1} A' e^0##, then ##{\omega^1}_3 = A^{-1} A' e^1## and ##{\omega^2}_3 = A^{-1} A' e^2##. You then get the curvature 2-forms from ##{\Theta^{\mu}}_{\nu} = {d\omega^{\mu}}_{\nu} + {\omega^{\mu}}_{\rho} \wedge {\omega^{\rho}}_{\nu}##, and I read off the Riemann components via ##{\Theta^{\mu}}_{\nu} = \tfrac{1}{2} {R^{\mu}}_{\nu \rho \sigma} e^{\rho} \wedge e^{\sigma}## as:\begin{align*}
{R^{0}}_{303} &= {R^{1}}_{313} = {R^{2}}_{323} = \frac{A''}{A} \\
{R^{0}}_{202} &= {R^{0}}_{101} = {R^{1}}_{212} = - \left( \frac{A'}{A} \right)^2
\end{align*}
OK... so assuming these are correct, you need to figure out how to ensure that ##T_{ab} k^a k^b \geq 0## for any null vector ##k##. In principle you can use these components to construct the energy-momentum tensor in the tetrad basis via ##T_{\mu \nu} = (8\pi)^{-1} (R_{\mu \nu} - \tfrac{1}{2} R \eta_{\mu \nu})##, but this will take a bit more work.

Then, due to symmetry in x-y, I can rotate the x-y components of the null vector so that it takes the components ##k^{\mu} = (k^0, k^1, 0, k^3)## again in the tetrad basis, and there is the null constraint ##\eta_{\mu \nu} k^{\mu} k^{\nu} = -(k^0)^2 + (k^1)^2 + (k^3)^2 = 0## that I can use to consider only two independent components.

Is the way forward to go ahead with computing all of the matrix elements ##T_{\mu \nu}##, and then forming a system of equations? It seems like there must be a better approach.
 
Physics news on Phys.org
ergospherical said:
the null constraint ##\eta_{\mu \nu} k^{\mu} k^{\nu} = -(k^0)^2 + (k^1)^2 + (k^3)^2 = 0##
No, the null constraint is ##g_{\mu \nu} k^\mu k^\nu = 0##, which means ##- A^2 (k^0)^2 + A^2 (k^1)^2 + (k^3)^2 = 0##.

ergospherical said:
Is the way forward to go ahead with computing all of the matrix elements ##T_{\mu \nu}##, and then forming a system of equations?
Maxima should be able to crank out the Einstein tensor of the metric. I would expect you will find that it does not have many nonzero components, which will simplify things.
 
PeterDonis said:
No, the null constraint is ##g_{\mu \nu} k^\mu k^\nu = 0##, which means ##- A^2 (k^0)^2 + A^2 (k^1)^2 + (k^3)^2 = 0##.
The ##k^{\mu}## are here in the tetrad basis, so we use the Lorentz metric ##\eta##.
 
ergospherical said:
The ##k^{\mu}## are here in the tetrad basis, so we use the Lorentz metric ##\eta##.
So that means the factors of ##A## appear in the components. They have to appear somewhere.
 
Well, indeed, but I did specify that I'm working entirely in the tetrad basis. (This choice obviously simplifies things because I already have the Riemann components in the tetrad basis).
 
ergospherical said:
\begin{align*}
{R^{0}}_{303} &= {R^{1}}_{313} = {R^{2}}_{323} = \frac{A''}{A} \\
{R^{0}}_{202} &= {R^{0}}_{101} = {R^{1}}_{212} = - \left( \frac{A'}{A} \right)^2
\end{align*}
These look a lot like the terms you get when you expand out ##d^2 / dz^2 ( \log A(z) )##. That should be helpful.
 

Similar threads

  • · Replies 38 ·
2
Replies
38
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K