Null energy condition constrains the metric

  • Context: Undergrad 
  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    Metric Riemann
Click For Summary
SUMMARY

The forum discussion centers on the application of the null energy condition to a specific metric in General Relativity, represented as $$g = A(z)^2(-dt^2 + dx^2 + dy^2) + dz^2$$. The condition is satisfied if $$\frac{d^2}{dz^2} \log A(z) \leq 0$$, which is derived using the tetrad formalism. The Riemann components are calculated, leading to the construction of the energy-momentum tensor via $$T_{\mu \nu} = (8\pi)^{-1} (R_{\mu \nu} - \tfrac{1}{2} R \eta_{\mu \nu})$$. The discussion emphasizes the importance of the null constraint $$g_{\mu \nu} k^\mu k^\nu = 0$$ in simplifying the analysis of the metric.

PREREQUISITES
  • Understanding of General Relativity concepts, particularly the null energy condition.
  • Familiarity with tetrad formalism in the context of metrics.
  • Knowledge of Riemann curvature tensors and their components.
  • Proficiency in mathematical techniques for deriving energy-momentum tensors.
NEXT STEPS
  • Study the implications of the null energy condition in various metrics.
  • Learn how to compute Riemann curvature components using tetrad formalism.
  • Explore the use of Maxima for calculating Einstein tensors from given metrics.
  • Investigate the relationship between the second derivative of log functions and curvature conditions.
USEFUL FOR

Researchers and students in theoretical physics, particularly those focusing on General Relativity, metric analysis, and energy conditions in cosmological models.

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
Another GR question... in the thick of revision season. I would appreciate a sketch of how to approach the problem.

You basically are given a metric, involving a positive function ##A(z)##, $$g = A(z)^2(-dt^2 + dx^2 + dy^2) + dz^2$$The game is to figure out somehow that the null-energy condition is satisfied if$$\frac{d^2}{dz^2} \log A(z) \leq 0$$I obtained the Riemann components using the tetrad formalism with the basis ##(A dt, A dx, A dy, dz)##. You get non-zero connection 1-forms ##{\omega^0}_3 = A^{-1} A' e^0##, then ##{\omega^1}_3 = A^{-1} A' e^1## and ##{\omega^2}_3 = A^{-1} A' e^2##. You then get the curvature 2-forms from ##{\Theta^{\mu}}_{\nu} = {d\omega^{\mu}}_{\nu} + {\omega^{\mu}}_{\rho} \wedge {\omega^{\rho}}_{\nu}##, and I read off the Riemann components via ##{\Theta^{\mu}}_{\nu} = \tfrac{1}{2} {R^{\mu}}_{\nu \rho \sigma} e^{\rho} \wedge e^{\sigma}## as:\begin{align*}
{R^{0}}_{303} &= {R^{1}}_{313} = {R^{2}}_{323} = \frac{A''}{A} \\
{R^{0}}_{202} &= {R^{0}}_{101} = {R^{1}}_{212} = - \left( \frac{A'}{A} \right)^2
\end{align*}
OK... so assuming these are correct, you need to figure out how to ensure that ##T_{ab} k^a k^b \geq 0## for any null vector ##k##. In principle you can use these components to construct the energy-momentum tensor in the tetrad basis via ##T_{\mu \nu} = (8\pi)^{-1} (R_{\mu \nu} - \tfrac{1}{2} R \eta_{\mu \nu})##, but this will take a bit more work.

Then, due to symmetry in x-y, I can rotate the x-y components of the null vector so that it takes the components ##k^{\mu} = (k^0, k^1, 0, k^3)## again in the tetrad basis, and there is the null constraint ##\eta_{\mu \nu} k^{\mu} k^{\nu} = -(k^0)^2 + (k^1)^2 + (k^3)^2 = 0## that I can use to consider only two independent components.

Is the way forward to go ahead with computing all of the matrix elements ##T_{\mu \nu}##, and then forming a system of equations? It seems like there must be a better approach.
 
Physics news on Phys.org
ergospherical said:
the null constraint ##\eta_{\mu \nu} k^{\mu} k^{\nu} = -(k^0)^2 + (k^1)^2 + (k^3)^2 = 0##
No, the null constraint is ##g_{\mu \nu} k^\mu k^\nu = 0##, which means ##- A^2 (k^0)^2 + A^2 (k^1)^2 + (k^3)^2 = 0##.

ergospherical said:
Is the way forward to go ahead with computing all of the matrix elements ##T_{\mu \nu}##, and then forming a system of equations?
Maxima should be able to crank out the Einstein tensor of the metric. I would expect you will find that it does not have many nonzero components, which will simplify things.
 
PeterDonis said:
No, the null constraint is ##g_{\mu \nu} k^\mu k^\nu = 0##, which means ##- A^2 (k^0)^2 + A^2 (k^1)^2 + (k^3)^2 = 0##.
The ##k^{\mu}## are here in the tetrad basis, so we use the Lorentz metric ##\eta##.
 
ergospherical said:
The ##k^{\mu}## are here in the tetrad basis, so we use the Lorentz metric ##\eta##.
So that means the factors of ##A## appear in the components. They have to appear somewhere.
 
Well, indeed, but I did specify that I'm working entirely in the tetrad basis. (This choice obviously simplifies things because I already have the Riemann components in the tetrad basis).
 
ergospherical said:
\begin{align*}
{R^{0}}_{303} &= {R^{1}}_{313} = {R^{2}}_{323} = \frac{A''}{A} \\
{R^{0}}_{202} &= {R^{0}}_{101} = {R^{1}}_{212} = - \left( \frac{A'}{A} \right)^2
\end{align*}
These look a lot like the terms you get when you expand out ##d^2 / dz^2 ( \log A(z) )##. That should be helpful.
 

Similar threads

  • · Replies 38 ·
2
Replies
38
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K