I am having trouble with this number density astrophysics question. Any help is greatly appreciated:(adsbygoogle = window.adsbygoogle || []).push({});

Consider a galactic disk with radius much larger than its thickness. Let R be the radius and the thickness be 2H where H is the ‘scale height’ of the disk. For a population of objects with large n3, the mean distance is small and a 3-dimensional approach can be taken. For a sparse population with large mean distance, a 2-dimensional (area) approach is appropriate where n2 is the integral of n3 through the disk vertically. At what mean distance does the transition from a 2D to 3D approach occur?

This question has to do with the relationship between number density and average distance, which is (I think) average distance = 1/cube root(density) for 3D space and 1/square root(density) for 2D space.

It involves calculus which I'm not too comfortable with and I'm not sure where to start... Please help!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Number density/average distance relationship question

Loading...

Similar Threads for Number density average |
---|

B Number of stars in the universe over time |

B Density of matter at a galactic center |

I How much number crunching is necessary in some simulations? |

**Physics Forums | Science Articles, Homework Help, Discussion**