MHB Number of Handshakes at UN Meeting: 15

  • Thread starter Thread starter rainbow1
  • Start date Start date
AI Thread Summary
At a United Nations meeting with 15 delegates, the total number of handshakes exchanged can be calculated using the formula n(n-1)/2. For 15 delegates, this results in 15(15-1)/2, which equals 105 handshakes. Each delegate shakes hands with every other delegate exactly once. The calculation accounts for the fact that each handshake involves two individuals. Therefore, the total number of handshakes at the meeting is 105.
rainbow1
Messages
13
Reaction score
0
at a United Nations meeting, a group of 15 delegates meet to discuss an international peace treaty. If all of the delegates shake hands with one another, how many handshakes are exchanged?
 
Mathematics news on Phys.org
That should be straight forward. In a group of n people each person shakes hands with the n-1 other people. That would be a total or n(n-1) except that each had shake involves two people. The total number of hand shakes is n(n-1)/2.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Back
Top