MHB Number of Partitions of n into j Parts not Exceeding m?

  • Thread starter Thread starter poissonspot
  • Start date Start date
  • Tags Tags
    Partition
poissonspot
Messages
39
Reaction score
0
Remember that the number of partitions of n into parts not exceeding m is equal to the number of partitions of n into m or fewer parts? Does anyone know much about the number of partitions of n into m parts not exceeding m?

Thanks!

Edit: Or more generally, the number of partitions of n into j parts not exceeding m?
Thanks again,
 
Last edited:
Physics news on Phys.org
conscipost said:
Remember that the number of partitions of n into parts not exceeding m is equal to the number of partitions of n into m or fewer parts? Does anyone know much about the number of partitions of n into m parts not exceeding m?

Thanks!

Edit: Or more generally, the number of partitions of n into j parts not exceeding m?
Thanks again,

All right, so after trying to make sense of your post, I've decided that there are the following distinct questions to be answered here:

1: In how many ways can one partition $n$ objects into groups of less than $m$
2: In how many ways can one partition $n$ objects into $m$ or fewer groups
3: In how many ways can one partition $n$ objects into $j$ parts not exceeding $m$

Please correct me if you meant something else.
 
TheBigBadBen said:
All right, so after trying to make sense of your post, I've decided that there are the following distinct questions to be answered here:

1: In how many ways can one partition $n$ objects into groups of less than $m$
2: In how many ways can one partition $n$ objects into $m$ or fewer groups
3: In how many ways can one partition $n$ objects into $j$ parts not exceeding $m$

Please correct me if you meant something else.

Hey, I'm just talking about integer partitions, but I'm sorry about the lack of clarity. I think it's well known that the number of partitions of an integer n w/ largest part m is equal to the number of partitions of n with m parts a statement equivalent to the first line "Remember".

However, I'm really interested in the question of how many integer partitions of n with j parts have parts not exceeding m.

Does that clarify things a little?
 
Last edited:
conscipost said:
Hey, I'm just talking about integer partitions, but I'm sorry about the lack of clarity. I think it's well known that the number of partitions of an integer n w/ largest part m is equal to the number of partitions of n with m parts a statement equivalent to the first line "Remember".

However, I'm really interested in the question of how many integer partitions of n with j parts have parts not exceeding m.

Does that clarify things a little?

I realize you mean for $m,n,j$ to be integers. It's still a tough problem.

After looking carefully, the link wasn't as related as I thought, so sorry about that.

Some things I figured out that might help: you can add up the multinomial coefficients
$$
\binom{n}{k_1,k_2,...,k_m}
$$
Over all choices of $k_j$ such that $0≤k_j≤n$, not counting repeating combinations of $k_j$, and $\sum_{j=1}^m k_j=n$, which I haven't found a way to simplify.

Or, if we're looking at the wider version of the problem where we have labeled parts $A_1,A_2,...,A_m$, then the number of ways you can distribute the $n$ objects to the $m$ sets (including potentially empty $A_j$s) is simply $m^n$.
 
Last edited:
TheBigBadBen said:
I realize you mean for $m,n,j$ to be integers. It's still a tough problem.

After looking carefully, the link wasn't as related as I thought, so sorry about that.

Some things I figured out that might help: you can add up the multinomial coefficients
$$
\binom{n}{k_1,k_2,...,k_m}
$$
Over all choices of $k_j$ such that $0≤k_j≤n$, not counting repeating combinations of $k_j$, and $\sum_{j=1}^m k_j=n$, which I haven't found a way to simplify.

Or, if we're looking at the wider version of the problem where we have labeled parts $A_1,A_2,...,A_m$, then the number of ways you can distribute the $n$ objects to the $m$ sets (including potentially empty $A_j$s) is simply $m^n$.

Thanks again.
What I am hoping to find is the number of j-tuples of positive integers that are non increasing so that a0+a1+...+aj=n and ai is less than or equal to m.
Partition (number theory) - Wikipedia, the free encyclopedia
 
Last edited:
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top