Number of Partitions of n into j Parts not Exceeding m?

  • Context: MHB 
  • Thread starter Thread starter poissonspot
  • Start date Start date
  • Tags Tags
    Partition
Click For Summary

Discussion Overview

The discussion revolves around the number of partitions of an integer \( n \) into \( j \) parts not exceeding \( m \). Participants explore various formulations and interpretations of the problem, including distinctions between different types of partitions based on the number of groups and their sizes.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested

Main Points Raised

  • Some participants propose that the number of partitions of \( n \) into parts not exceeding \( m \) is equivalent to the number of partitions of \( n \) into \( m \) or fewer parts.
  • Others clarify that they are specifically interested in the number of integer partitions of \( n \) with \( j \) parts that do not exceed \( m \).
  • A participant outlines three distinct questions regarding the partitioning of \( n \) objects: into groups of less than \( m \), into \( m \) or fewer groups, and into \( j \) parts not exceeding \( m \).
  • Some contributions mention the complexity of the problem and suggest that it involves summing multinomial coefficients over certain conditions.
  • There is a mention of a broader version of the problem involving labeled parts, where the number of distributions of \( n \) objects to \( m \) sets is \( m^n \).

Areas of Agreement / Disagreement

Participants express varying interpretations of the problem, and no consensus is reached on the best approach or solution. The complexity of the problem is acknowledged, and multiple viewpoints on how to tackle it are presented.

Contextual Notes

Participants note the challenge in simplifying the expressions related to the multinomial coefficients and the conditions on the partitions, indicating that the problem may depend on specific definitions and assumptions.

poissonspot
Messages
39
Reaction score
0
Remember that the number of partitions of n into parts not exceeding m is equal to the number of partitions of n into m or fewer parts? Does anyone know much about the number of partitions of n into m parts not exceeding m?

Thanks!

Edit: Or more generally, the number of partitions of n into j parts not exceeding m?
Thanks again,
 
Last edited:
Physics news on Phys.org
conscipost said:
Remember that the number of partitions of n into parts not exceeding m is equal to the number of partitions of n into m or fewer parts? Does anyone know much about the number of partitions of n into m parts not exceeding m?

Thanks!

Edit: Or more generally, the number of partitions of n into j parts not exceeding m?
Thanks again,

All right, so after trying to make sense of your post, I've decided that there are the following distinct questions to be answered here:

1: In how many ways can one partition $n$ objects into groups of less than $m$
2: In how many ways can one partition $n$ objects into $m$ or fewer groups
3: In how many ways can one partition $n$ objects into $j$ parts not exceeding $m$

Please correct me if you meant something else.
 
TheBigBadBen said:
All right, so after trying to make sense of your post, I've decided that there are the following distinct questions to be answered here:

1: In how many ways can one partition $n$ objects into groups of less than $m$
2: In how many ways can one partition $n$ objects into $m$ or fewer groups
3: In how many ways can one partition $n$ objects into $j$ parts not exceeding $m$

Please correct me if you meant something else.

Hey, I'm just talking about integer partitions, but I'm sorry about the lack of clarity. I think it's well known that the number of partitions of an integer n w/ largest part m is equal to the number of partitions of n with m parts a statement equivalent to the first line "Remember".

However, I'm really interested in the question of how many integer partitions of n with j parts have parts not exceeding m.

Does that clarify things a little?
 
Last edited:
conscipost said:
Hey, I'm just talking about integer partitions, but I'm sorry about the lack of clarity. I think it's well known that the number of partitions of an integer n w/ largest part m is equal to the number of partitions of n with m parts a statement equivalent to the first line "Remember".

However, I'm really interested in the question of how many integer partitions of n with j parts have parts not exceeding m.

Does that clarify things a little?

I realize you mean for $m,n,j$ to be integers. It's still a tough problem.

After looking carefully, the link wasn't as related as I thought, so sorry about that.

Some things I figured out that might help: you can add up the multinomial coefficients
$$
\binom{n}{k_1,k_2,...,k_m}
$$
Over all choices of $k_j$ such that $0≤k_j≤n$, not counting repeating combinations of $k_j$, and $\sum_{j=1}^m k_j=n$, which I haven't found a way to simplify.

Or, if we're looking at the wider version of the problem where we have labeled parts $A_1,A_2,...,A_m$, then the number of ways you can distribute the $n$ objects to the $m$ sets (including potentially empty $A_j$s) is simply $m^n$.
 
Last edited:
TheBigBadBen said:
I realize you mean for $m,n,j$ to be integers. It's still a tough problem.

After looking carefully, the link wasn't as related as I thought, so sorry about that.

Some things I figured out that might help: you can add up the multinomial coefficients
$$
\binom{n}{k_1,k_2,...,k_m}
$$
Over all choices of $k_j$ such that $0≤k_j≤n$, not counting repeating combinations of $k_j$, and $\sum_{j=1}^m k_j=n$, which I haven't found a way to simplify.

Or, if we're looking at the wider version of the problem where we have labeled parts $A_1,A_2,...,A_m$, then the number of ways you can distribute the $n$ objects to the $m$ sets (including potentially empty $A_j$s) is simply $m^n$.

Thanks again.
What I am hoping to find is the number of j-tuples of positive integers that are non increasing so that a0+a1+...+aj=n and ai is less than or equal to m.
Partition (number theory) - Wikipedia, the free encyclopedia
 
Last edited:

Similar threads

  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K