MHB Number of Possible Sums with 1-15 Cards

  • Thread starter Thread starter WMDhamnekar
  • Start date Start date
  • Tags Tags
    Cards Sums
WMDhamnekar
MHB
Messages
376
Reaction score
28
There are 8 cards with number 10 on them, 5 cards with number 100 on them and 2 cards with number 500 on them. How many distinct sums are possible using from 1 to all of the 15 cards?Answer given is 143. But my logic is for any sum, at least 2 numbers are needed. So, there are $\binom{15} {2} + \binom{15}{3}+...\binom{15}{15} $ distinct sums. So, I think answer 143 is wrong.
What is your opinion?
 
Mathematics news on Phys.org
\begin{pmatrix}15 \\ 2 \end{pmatrix} is the number of sums of two of the numbers, \begin{pmatrix}15 \\ 3 \end{pmatrix} is the number of sums of three of the numbers, etc. But they won't be distinct sums.
 
Dhamnekar Winod said:
There are 8 cards with number 10 on them, 5 cards with number 100 on them and 2 cards with number 500 on them. How many distinct sums are possible using from 1 to all of the 15 cards?Answer given is 143. But my logic is for any sum, at least 2 numbers are needed. So, there are $\binom{15} {2} + \binom{15}{3}+...\binom{15}{15} $ distinct sums. So, I think answer 143 is wrong.
What is your opinion?

The directions clearly state from 1 to 15, so their solution is based on that premise.
 
CountryBoy said:
\begin{pmatrix}15 \\ 2 \end{pmatrix} is the number of sums of two of the numbers, \begin{pmatrix}15 \\ 3 \end{pmatrix} is the number of sums of three of the numbers, etc. But they won't be distinct sums.

Hello,

I have computed 141 distinct sums. But the answer is 143. Which 2 distinct sums i omitted, would you tell me? Is the answer 143 wrong? All the 141 distinct sums are

20,30,40,50,60,70,80,110,120,130,140,150,160,170,180,200,210,220,230,240,250,260,270,280,300,310,320,330,340,350,360,370,380,400,410,420,430,440,450,460,470,480,500,510,520,530,540,550,560,570,580,600,610,620,630,640,650,660,670,680,700,710,720,730,740,750,760,770,780,800,810,820,830,840,850,860,870,880,900,910,920,930,940,950,960,970,980,1000,1010,1020,1030,1040,1050,1060,1070,1080,1100,1110,1120,1130,1140,1150,1160,1170,1180,1200,1210,1220,1230,1240,1250,1260,1270,1280,1300,1310,1320,1330,1340,1350,1360,1370,1380,1400,1410,1420,1430,1440,1450,1460,1470,1480,1500,1510,1520,1530,1540,1550,1560,1570,1580.


I know one formula $\binom{r+n-1}{r-n+1}$ which computes distinct sums, where n=cells and r= balls. How to use that here? Or is there any other formula?
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top