MHB Number of Real Solutions to Cosine System Between 0 and 2π

  • Thread starter Thread starter eddybob123
  • Start date Start date
  • Tags Tags
    Cosine System
Click For Summary
The discussion focuses on finding the number of unordered sets of distinct real numbers {t_1, t_2, t_3, t_4} that satisfy a system of cosine equations. The equations are transformed using the cosine double angle identity, leading to a mapping of cosines represented as x_n = cos(t_n). The periodic nature of the mapping suggests that solutions can be derived from periodic points, specifically through the composition of the function f. The derived solution involves the values x = ±√(1/6), leading to the set {θ, π-θ, π+θ, 2π-θ} as a valid solution. The conclusion is that this appears to be the only unique solution to the problem.
eddybob123
Messages
177
Reaction score
0
How many (unordered) sets of pairwise distinct real numbers $$\{t_1,t_2,t_3,t_4\}$$ all between 0 and $$2\pi$$ are there such that in some order they satisfy the following system:
$$\begin{align*}\cos(2t_1)=4\cos(t_1)\cos(t_2)\\
\cos(2t_2)=4\cos(t_2)\cos(t_3)\\
\cos(2t_3)=4\cos(t_3)\cos(t_4)\\
\cos(2t_4)=4\cos(t_4)\cos(t_1)
\end{align*}$$
 
Mathematics news on Phys.org
eddybob123 said:
How many (unordered) sets of pairwise distinct real numbers $$\{t_1,t_2,t_3,t_4\}$$ all between 0 and $$2\pi$$ are there such that in some order they satisfy the following system:
$$\begin{align*}\cos(2t_1)=4\cos(t_1)\cos(t_2)\\
\cos(2t_2)=4\cos(t_2)\cos(t_3)\\
\cos(2t_3)=4\cos(t_3)\cos(t_4)\\
\cos(2t_4)=4\cos(t_4)\cos(t_1)
\end{align*}$$
Nobody else has tried this one, so I'll throw in my thoughts. First, I used the relation $\cos2\theta = 2\cos^2\theta-1$ to write the equations as $\cos t_{n+1} = \dfrac{2\cos^2t_n - 1}{4\cos t_n}\ (n=1,2,3,4)$ (where $t_5$ is interpreted to mean $t_1$). Next, let $x_n = \cos t_n$. Then $x_{n+1} = f(x_n)$, where $f(x) = \dfrac{2x^2-1}{4x}$. So $x_1$ is a periodic point of this mapping, with period $4$. There is also the requirement that $|x_n| \leqslant 1$ for each $n$.

So we want to find $x$ such that $f(f(f(f(x)))) = x$. The composition of four repetitions of the map $f$ seems impossibly complicated, and the best I can do is to form the composition of two repetitions of $f$. In fact, $$f(f(x)) = \frac{2\left(\frac{2x^2-1}{4x}\right)^2-1}{\frac{2x^2-1}{x}},$$ which simplifies to $\dfrac{4x^4 - 12x^2 + 1}{8x(2x^2-1)}.$ if you put that equal to $x$, you get the solutions $x = \pm\sqrt{1/6}$.

Now let $\theta = \arccos\sqrt{1/6}$. Then you can get a solution to the original problem by taking $\{t_1,t_2,t_3,t_4\} = \{\theta, \pi-\theta, \pi+\theta, 2\pi-\theta\}$ (as an unordered set). The trick there is to expand the orbit of period two in the $x$-map to an orbit of period four in the $t$-space by using the fact that there are two numbers in the interval $[0,2\pi]$ taking any given value of the cosine function. In that way, we get four distinct values for the $t_n$ although there are only two distinct values of the $x$'s.

That is the only solution that I can find to this problem, and my guess is that it is unique.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 26 ·
Replies
26
Views
768
Replies
4
Views
1K
  • · Replies 36 ·
2
Replies
36
Views
7K