Numerical Analysis problem Newton's method

Click For Summary
SUMMARY

The discussion focuses on solving the equation $f(x) = x^3 - 8$ using Newton's method, a numerical technique for finding roots of functions. The derivative of the function is calculated as $f'(x) = 3x^2$, and the tangent line at a point $x_0$ is used to iteratively approximate the root. Starting with an initial guess, such as $x_0 = 1$, participants are guided to compute successive approximations until the values converge within a specified error margin. It is emphasized that starting with $x_0 = 0$ is not feasible due to division by zero in the derivative.

PREREQUISITES
  • Understanding of Newton's method for root finding
  • Basic knowledge of calculus, specifically derivatives
  • Familiarity with polynomial equations and factoring techniques
  • Ability to perform iterative calculations
NEXT STEPS
  • Study the application of Newton's method in different types of equations
  • Learn about convergence criteria for iterative methods
  • Explore the differences between Newton's method and other root-finding algorithms like the bisection method
  • Investigate the impact of initial guesses on the convergence of Newton's method
USEFUL FOR

Students and professionals in mathematics, engineering, and computer science who are interested in numerical analysis and root-finding techniques.

carrab
Messages
1
Reaction score
0
View attachment 6617

Can anyone help in the solution of this problem? how can i determine the zero x*??
 

Attachments

  • problem 2.PNG
    problem 2.PNG
    5.6 KB · Views: 149
Mathematics news on Phys.org
Hello, and welcome to MHB, carrab! (Wave)

To find the zero, I would equate the function $f$ to zero, and solve for $x$:

$$f(x)=0$$

$$x^3-8=0$$

$$x^3-2^3=0$$

When you factor as the difference of cubes, what do you find?
 
"Newton's method" is a numerical method for solving an equation that basically replaces the function at a given value of x by the tangent function at that point. Here the function is f(x)= x^3- 8 which has derivative f'(x)= 3x^2, the derivative at x_0 f(x_0)= 3x_0^2 while the value of the function is x_0^3- 8. So the tangent function at x= x_0 is y= 3x_0^2(x- x_0)+ x_0^3- 8. Setting that equal to 0, 3x_0^2(x- x_0)+ x_0^3- 8= 0, 3x_0^2(x- x_0)= 8- x_0^3, x- x_0= \frac{8- x_0^3}{3x_0^2}, and x= x_0+ \frac{8- x_0^3}{3x_0^2}.

Start with some reasonable value for x_0 and calculate the next value for x: with, say, x_0= 1, x= 1+ \frac{8- 1}{3}= 1+ \frac{7}{3}= \frac{10}{3}. Now take x_0= \frac{10}{3} and calculate the next value for x. Repeat until you get two consecutive values for x that are closer together than your allowable error.

x_0= 0 is not a "good" starting value (in fact, it is impossible) because the denominator, 3x_0^2, would be 0.
 

Similar threads

  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 1 ·
Replies
1
Views
836
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
10K