Numerical method to Lippman-Schwinger equation

Click For Summary
SUMMARY

This discussion focuses on the application of numerical methods to the Lippmann-Schwinger equation, specifically addressing the treatment of principal value integrals. The integral $$\mathcal{P}\int_0^\infty \frac{f(x)}{k^2-k_0^2}dk$$ is reformulated to avoid singularities by using the expression $$\int_0^\infty \frac{f(k)-f(k_0)}{k^2-k_0^2}dk$$. The Gaussian quadrature method is employed to approximate the integral, leading to a numerical evaluation of the Lippmann-Schwinger equation. The discussion raises a critical question regarding the splitting of summation terms and the implications for singularities at $$k=k_0$$.

PREREQUISITES
  • Understanding of principal value integrals
  • Familiarity with the Lippmann-Schwinger equation
  • Knowledge of Gaussian quadrature methods
  • Basic concepts in computational physics
NEXT STEPS
  • Study the properties of principal value integrals in depth
  • Explore advanced numerical methods for solving integral equations
  • Learn about the implications of singularities in numerical analysis
  • Review computational physics literature, particularly regarding the Lippmann-Schwinger equation
USEFUL FOR

Researchers and students in computational physics, numerical analysts, and physicists working with integral equations will benefit from this discussion, particularly those interested in numerical methods for solving singular integrals.

HadronPhysics
Messages
2
Reaction score
0
There is a question that puzzle me when I apply numerical method to principal value integral. Let me descibe it. We make use of the fact that the integral ##\int_0^\infty \frac{dk}{k^2-k_0^2}## vanishes, namely,
$$
\int_0^\infty \frac{dk}{k^2-k_0^2} = 0 .
$$
We use this formula to express a principal value intergral as
$$ \mathcal{P}\int_0^\infty \frac{f(x)}{k^2-k_0^2}dk = \int_0^\infty \frac{f(k)-f(k_0)}{k^2-k_0^2}dk .$$
Now, the right hand side is no longer singular at ##k=k_0## because it is proportional to the derivative ##df/dx##. We can approximate this integral numerically, i.e.,
$$ \int_0^\infty \frac{f(k)-f(k_0)}{k^2-k_0^2}dk \approx \sum_i^N w_i \frac{f(k_i)-f(k_0)}{k_i^2-k_0^2} ,$$
where we adopt the Gaussian quadrature method.
Next, we change to Lippman-Schwinger equation where the principal integral occurs. That is
$$ R(k', k) = V(k', k) + \frac{2}{\pi} \mathcal{P}\int_0^\infty dp \frac{p^2V(k', p)R(p, k)}{(k_0^2-p^2)/2\mu} .$$
Then, we can evaluate this equation by the method that we have mentioned. we get
$$ R(k, k_0) = V(k, k_0) + \frac{2}{\pi} \sum_i^N \frac{p_i^2V(k', p_i)R(p_i, k_0)-k_0^2V(k', k_0)R(k_0, k_0)}{(k_0^2-p_i^2)/2\mu} w_i ,$$
where we let $k$ be $k_0$.
At present, everything is ok. the question that puzzles me will occur at the next step. In some computational physics books, for example, you can refer to [[1]](#id1), page: 118, it said that we can split term in summation to two part, namely,
$$ R(k, k_0) = V(k, k_0) \frac{2}{\pi} \left[ \sum_i^N \frac{k_i^2V(k, k_i)R(k_i, k_0)w_i}{(k_0^2-k_i^2)/2\mu} - k_0^2V(k, k_0)R(k_0, k_0)\sum_j^N\frac{w_j}{(k_0^2-k_j^2)/2\mu} \right] .$$
In the previous discussion, we constructed the term $\frac{f(k)-f(k_0)}{k^2-k_0^2}$ to avoid the singular at $k=k_0$. But here, we split the summation into two part. If $k_j\to k_0$, or $k_i\to k_0$, we can not see the term that is proportional to $df/dk$. I can not understand this step, because I think it contradicts the eqaution: ##\mathcal{P}\int_0^\infty \frac{f(x)}{k^2-k_0^2}dk = \int_0^\infty \frac{f(k)-f(k_0)}{k^2-k_0^2}dk. ##<div id="id1"></div>
- [1] [COMPUTATIONAL PHYSICS](https://courses.physics.ucsd.edu/2017/Spring/physics142/Lectures/Lecture18/Hjorth-JensenLectures2010.pdf)
 
Last edited:
Physics news on Phys.org
You have approximated the integral by a finite sum of bounded quantities. Terms of finite sums can always be re-ordered as you find convenient without affecting the result, and doing so in a context where you are using floating-point arithmetic might actually increase the accuracy of the result.

You are not then taking the limit N \to \infty and trying to sum an infinite series, where I agree that any re-ordering of the terms would require rigorous jusitification that the limit is not thereby affected. (It is more complicated here, since the values of the summands are themselves dependent on N.)
 
Last edited:

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K