A Numerical method to Lippman-Schwinger equation

HadronPhysics
Messages
2
Reaction score
0
There is a question that puzzle me when I apply numerical method to principal value integral. Let me descibe it. We make use of the fact that the integral ##\int_0^\infty \frac{dk}{k^2-k_0^2}## vanishes, namely,
$$
\int_0^\infty \frac{dk}{k^2-k_0^2} = 0 .
$$
We use this formula to express a principal value intergral as
$$ \mathcal{P}\int_0^\infty \frac{f(x)}{k^2-k_0^2}dk = \int_0^\infty \frac{f(k)-f(k_0)}{k^2-k_0^2}dk .$$
Now, the right hand side is no longer singular at ##k=k_0## because it is proportional to the derivative ##df/dx##. We can approximate this integral numerically, i.e.,
$$ \int_0^\infty \frac{f(k)-f(k_0)}{k^2-k_0^2}dk \approx \sum_i^N w_i \frac{f(k_i)-f(k_0)}{k_i^2-k_0^2} ,$$
where we adopt the Gaussian quadrature method.
Next, we change to Lippman-Schwinger equation where the principal integral occurs. That is
$$ R(k', k) = V(k', k) + \frac{2}{\pi} \mathcal{P}\int_0^\infty dp \frac{p^2V(k', p)R(p, k)}{(k_0^2-p^2)/2\mu} .$$
Then, we can evaluate this equation by the method that we have mentioned. we get
$$ R(k, k_0) = V(k, k_0) + \frac{2}{\pi} \sum_i^N \frac{p_i^2V(k', p_i)R(p_i, k_0)-k_0^2V(k', k_0)R(k_0, k_0)}{(k_0^2-p_i^2)/2\mu} w_i ,$$
where we let $k$ be $k_0$.
At present, everything is ok. the question that puzzles me will occur at the next step. In some computational physics books, for example, you can refer to [[1]](#id1), page: 118, it said that we can split term in summation to two part, namely,
$$ R(k, k_0) = V(k, k_0) \frac{2}{\pi} \left[ \sum_i^N \frac{k_i^2V(k, k_i)R(k_i, k_0)w_i}{(k_0^2-k_i^2)/2\mu} - k_0^2V(k, k_0)R(k_0, k_0)\sum_j^N\frac{w_j}{(k_0^2-k_j^2)/2\mu} \right] .$$
In the previous discussion, we constructed the term $\frac{f(k)-f(k_0)}{k^2-k_0^2}$ to avoid the singular at $k=k_0$. But here, we split the summation into two part. If $k_j\to k_0$, or $k_i\to k_0$, we can not see the term that is proportional to $df/dk$. I can not understand this step, because I think it contradicts the eqaution: ##\mathcal{P}\int_0^\infty \frac{f(x)}{k^2-k_0^2}dk = \int_0^\infty \frac{f(k)-f(k_0)}{k^2-k_0^2}dk. ##<div id="id1"></div>
- [1] [COMPUTATIONAL PHYSICS](https://courses.physics.ucsd.edu/2017/Spring/physics142/Lectures/Lecture18/Hjorth-JensenLectures2010.pdf)
 
Last edited:
Physics news on Phys.org
You have approximated the integral by a finite sum of bounded quantities. Terms of finite sums can always be re-ordered as you find convenient without affecting the result, and doing so in a context where you are using floating-point arithmetic might actually increase the accuracy of the result.

You are not then taking the limit N \to \infty and trying to sum an infinite series, where I agree that any re-ordering of the terms would require rigorous jusitification that the limit is not thereby affected. (It is more complicated here, since the values of the summands are themselves dependent on N.)
 
Last edited:
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top