A Numerical method to Lippman-Schwinger equation

Click For Summary
The discussion revolves around the application of numerical methods to the principal value integral in the context of the Lippmann-Schwinger equation. The integral is reformulated to avoid singularities at k=k0, allowing for numerical approximation using Gaussian quadrature. A puzzling point arises when splitting the summation in the Lippmann-Schwinger equation, as it seems to contradict the earlier approach that mitigated singularities. Concerns are raised about the implications of reordering terms in finite sums versus infinite series, particularly regarding the accuracy of numerical results. The conversation highlights the complexities of numerical integration in computational physics and the need for careful handling of singularities.
HadronPhysics
Messages
2
Reaction score
0
There is a question that puzzle me when I apply numerical method to principal value integral. Let me descibe it. We make use of the fact that the integral ##\int_0^\infty \frac{dk}{k^2-k_0^2}## vanishes, namely,
$$
\int_0^\infty \frac{dk}{k^2-k_0^2} = 0 .
$$
We use this formula to express a principal value intergral as
$$ \mathcal{P}\int_0^\infty \frac{f(x)}{k^2-k_0^2}dk = \int_0^\infty \frac{f(k)-f(k_0)}{k^2-k_0^2}dk .$$
Now, the right hand side is no longer singular at ##k=k_0## because it is proportional to the derivative ##df/dx##. We can approximate this integral numerically, i.e.,
$$ \int_0^\infty \frac{f(k)-f(k_0)}{k^2-k_0^2}dk \approx \sum_i^N w_i \frac{f(k_i)-f(k_0)}{k_i^2-k_0^2} ,$$
where we adopt the Gaussian quadrature method.
Next, we change to Lippman-Schwinger equation where the principal integral occurs. That is
$$ R(k', k) = V(k', k) + \frac{2}{\pi} \mathcal{P}\int_0^\infty dp \frac{p^2V(k', p)R(p, k)}{(k_0^2-p^2)/2\mu} .$$
Then, we can evaluate this equation by the method that we have mentioned. we get
$$ R(k, k_0) = V(k, k_0) + \frac{2}{\pi} \sum_i^N \frac{p_i^2V(k', p_i)R(p_i, k_0)-k_0^2V(k', k_0)R(k_0, k_0)}{(k_0^2-p_i^2)/2\mu} w_i ,$$
where we let $k$ be $k_0$.
At present, everything is ok. the question that puzzles me will occur at the next step. In some computational physics books, for example, you can refer to [[1]](#id1), page: 118, it said that we can split term in summation to two part, namely,
$$ R(k, k_0) = V(k, k_0) \frac{2}{\pi} \left[ \sum_i^N \frac{k_i^2V(k, k_i)R(k_i, k_0)w_i}{(k_0^2-k_i^2)/2\mu} - k_0^2V(k, k_0)R(k_0, k_0)\sum_j^N\frac{w_j}{(k_0^2-k_j^2)/2\mu} \right] .$$
In the previous discussion, we constructed the term $\frac{f(k)-f(k_0)}{k^2-k_0^2}$ to avoid the singular at $k=k_0$. But here, we split the summation into two part. If $k_j\to k_0$, or $k_i\to k_0$, we can not see the term that is proportional to $df/dk$. I can not understand this step, because I think it contradicts the eqaution: ##\mathcal{P}\int_0^\infty \frac{f(x)}{k^2-k_0^2}dk = \int_0^\infty \frac{f(k)-f(k_0)}{k^2-k_0^2}dk. ##<div id="id1"></div>
- [1] [COMPUTATIONAL PHYSICS](https://courses.physics.ucsd.edu/2017/Spring/physics142/Lectures/Lecture18/Hjorth-JensenLectures2010.pdf)
 
Last edited:
Physics news on Phys.org
You have approximated the integral by a finite sum of bounded quantities. Terms of finite sums can always be re-ordered as you find convenient without affecting the result, and doing so in a context where you are using floating-point arithmetic might actually increase the accuracy of the result.

You are not then taking the limit N \to \infty and trying to sum an infinite series, where I agree that any re-ordering of the terms would require rigorous jusitification that the limit is not thereby affected. (It is more complicated here, since the values of the summands are themselves dependent on N.)
 
Last edited:
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...