Graduate How can the stability of an ODE system be determined without solving it?

Click For Summary
The discussion focuses on determining the stability of a periodic ODE system represented by x'(t) = A(t)x(t). It is noted that fixing a time point t* and using the integral of A(t*) to analyze stability is flawed, as it assumes A is constant and misapplies vector division. Instead, the correct approach involves integrating A(t) over a period to derive a transformation matrix B, where the stability is determined by the eigenvalues of B. The time-ordered exponential is emphasized as necessary for accurate solutions. Ultimately, stability analysis requires solving the ODE over the period to establish the relationship between x(T) and x(0).
member 428835
Hi PF!

Given the ODE system ##x'(t) = A(t) x(t)## where ##x## is a vector and ##A## a square matrix periodic, so that ##A(t) = A(T+t)##, would the following be a good way to solve the system's stability: fix ##t^*##. Then

$$
\int \frac{1}{x} \, dx = \int A(t^*) \, dt \implies\\

x(t) = x(0)\exp\left( A(t^*)t \right).
$$

The eigenvalues of ##A(t^*)## determine the system's stability, but by fixing ##t##, this approach assumes ##A(t)## is approximately constant for ##t##, which may not be the case. What do you think?
 
Physics news on Phys.org
No. You essentially assumed that A is constant and even if it is you cannot divide by a vector.
 
Orodruin said:
No. You essentially assumed that A is constant and even if it is you cannot divide by a vector.
So this technique cannot be used to determine stability of a periodic function? I know solutions won't always work, but you think this fails in general for stability for aforementioned reasons?
 
You need to find the actual solution integrated over a period, which will be on the form ##x(t+T) = S x(t)##. The eigenvalues of ##S## will determine the stability.
 
  • Like
Likes FactChecker
Orodruin said:
You need to find the actual solution integrated over a period, which will be on the form ##x(t+T) = S x(t)##. The eigenvalues of ##S## will determine the stability.
So you're saying something like ##B = \int_0^T A(t) \, dt## and then solve ##x' = B x##?
 
Last edited by a moderator:
joshmccraney said:
So you're saying something like ##B = \int_0^T A(t) \, dt## and then solve ##x' = B x##?
No, that will not solve the differential equation. You need the time-ordered exponential.
 
Orodruin said:
No, that will not solve the differential equation. You need the time-ordered exponential.
Not solve, but show stability? I think you'll still say no, and thanks for the reply! :oldbiggrin:
 
joshmccraney said:
Not solve, but show stability? I think you'll still say no, and thanks for the reply! :oldbiggrin:
It will not be easy, but you need to solve ##x'(t) = A(t) x(t), \; 0 \leq t \leq T## for given ##x(0)## You can express the vector ##x(T)## as some linear transformation of ##x(0),## that is, ##x(T) = B x(0)## for some matrix ##B## that you can determine numerically. Stability issues involve ##B##.
 

Similar threads

  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
8
Views
2K
Replies
4
Views
1K