Onsanger and Stefan-Maxwell Equations

Click For Summary
SUMMARY

The discussion focuses on the Stefan-Maxwell and Onsager equations, which are essential for calculating mole flux in various systems. The Stefan-Maxwell equations are specifically used for modeling diffusion in gases, while the Onsager equations apply to mass transfer in electrolytes, incorporating both diffusion and electric field migration. The participants clarify the derivation of the Onsager equation from its initial form, emphasizing the importance of correctly interpreting the summation indices and the role of interaction coefficients. The conversation culminates in a detailed explanation of how to express velocity differences as a function of driving forces through matrix inversion.

PREREQUISITES
  • Understanding of Stefan-Maxwell equations for gas diffusion
  • Familiarity with Onsager equations for mass transfer in electrolytes
  • Knowledge of electrochemical potential and its gradients
  • Basic matrix algebra, including matrix inversion
NEXT STEPS
  • Study the derivation of the Onsager equations from the Stefan-Maxwell equations
  • Explore matrix inversion techniques in the context of physical chemistry
  • Investigate applications of Onsager equations in electrochemical systems
  • Learn about the implications of interaction coefficients in multicomponent transport
USEFUL FOR

Researchers, chemists, and engineers working in electrochemistry, particularly those involved in modeling mass transfer processes in electrolytic systems.

Dario56
Messages
289
Reaction score
48
Stefan-Maxwell and Onsanger equations are equations which can be used to calculate mole flux of the component due to different types of gradients. It is assumed that driving forces of mass transfer are in equilibrium with drag forces due to interaction of different types of components.

Stefan-Maxwell equations model diffusion in gases while Onsanger equations model mass transfer in electrolytes where ions can both diffuse and move in the electric field (migration). Both equations can be expressed in the same form, but I will concentrate on the Onsanger type as I'm more interested in it: $$c_i \nabla \bar \mu_i = \sum_j K_{ij} (v_j - v_i) \tag {1}$$

where ##\bar \mu_i## is electrochemical potential of ion ##i##, ##K_{ij}## is interaction coefficient between ions ##i## and ##j##, ##v## is a velocity of the corresponding ion and ##c_i$## is the concentration.

Electrochemical potential gradient takes into account both chemical and electric potential gradient and is therefore sufficient to explain mass transfer in electrolytes.

In the textbook Electrochemical Systems by Newman and Alyea, chapter 12.6: Multicomponent Transport, this equation is written in a bit of a different form on the grounds that in the system of ##n## ions, there are ##n-1## independent velocity differences ##v_j - v_i## or electrochemical potential gradients ## \nabla\bar \mu _i##.

While I understand that there are ##n-1## independent variables previously mentioned, I don't see why does that lead to the equation of this form: $$ c_i \nabla \bar \mu_i = \sum_j M_{ij}(v_j - v_0) \tag {2}$$

where ##v_0## is the velocity of any ion in the solution and ##M_{ij}## is a matrix connected to the interaction coeffiecient matrix ##K_{ij}## and defined as: $$M_{ij} = \begin{cases} K_{ij}, & i \neq j \\ K_{ij} - \sum_k K_{ik}, & i=j \end{cases}$$

Equation (2) is written without a derivation or much explanation and therefore I don't understand how did we get equation (2) from equation (1).
 
Chemistry news on Phys.org
Maybe I'm doing something wrong here, but I'm not seeing how this is right. Consider ##n=3## and write out the rhs of equations 1 and 2 explicitly. For equation 1 you get (taking the ##i=1## case WLOG):
$$c_1\nabla\bar{\mu}_1=K_{11}(v_1-v_1)+K_{12}(v_1-v_2)+K_{13}(v_1-v_3)=K_{12}(v_1-v_2)+K_{13}(v_1-v_3)$$
and for equation 2 you get
$$c_1\nabla\bar{\mu}_1=(K_{11}-(K_{11}+K_{12}+K_{13}))(v_1-v_0)+K_{12}(v_1-v_0)+K_{13}(v_1-v_0)=0$$
Did I miss something?
 
TeethWhitener said:
Maybe I'm doing something wrong here, but I'm not seeing how this is right. Consider ##n=3## and write out the rhs of equations 1 and 2 explicitly. For equation 1 you get (taking the ##i=1## case WLOG):
$$c_1\nabla\bar{\mu}_1=K_{11}(v_1-v_1)+K_{12}(v_1-v_2)+K_{13}(v_1-v_3)=K_{12}(v_1-v_2)+K_{13}(v_1-v_3)$$
and for equation 2 you get
$$c_1\nabla\bar{\mu}_1=(K_{11}-(K_{11}+K_{12}+K_{13}))(v_1-v_0)+K_{12}(v_1-v_0)+K_{13}(v_1-v_0)=0$$
Did I miss something?
You did. In equation 2 sum goes over ##j## ##(v_j - v_0)##. You read it like is written ##(v_i - v_0)##: $$ c_ 1 \nabla \bar \mu_1 = (K_{11} - (K_{11} + K_{12} + K_{13}))(v_1 - v_0) + K_{12}(v_2 - v_0) + K_{13}(v_3 - v_0)$$
 
  • Like
Likes   Reactions: TeethWhitener
Dario56 said:
You did. In equation 2 sum goes over ##j## ##(v_j - v_0)##. You read it like is written ##(v_i - v_0)##: $$ c_ 1 \nabla \bar \mu_1 = (K_{11} - (K_{11} + K_{12} + K_{13}))(v_1 - v_0) + K_{12}(v_2 - v_0) + K_{13}(v_3 - v_0)$$
Ah, yes. Well now there's a sign problem, isn't there?
$$c_ 1 \nabla \bar \mu_1 = -K_{12}(v_1 - v_0) - K_{13}(v_1 - v_0) + K_{12}(v_2 - v_0) + K_{13}(v_3 - v_0)=K_{12}(v_2 - v_1)+ K_{13}(v_3 - v_1)$$
which is the negative of equation 1. Unless of course I missed something else.
But if you correct that with a negative sign (assuming it needs to be corrected), it should be straightforward to see how equation 2 works. The ##i=j## terms will cancel and the ##v_0## terms will also cancel and you'll be left with the same result as equation 1.
 
TeethWhitener said:
Ah, yes. Well now there's a sign problem, isn't there?
$$c_ 1 \nabla \bar \mu_1 = -K_{12}(v_1 - v_0) - K_{13}(v_1 - v_0) + K_{12}(v_2 - v_0) + K_{13}(v_3 - v_0)=K_{12}(v_2 - v_1)+ K_{13}(v_3 - v_1)$$
which is the negative of equation 1. Unless of course I missed something else.
But if you correct that with a negative sign (assuming it needs to be corrected), it should be straightforward to see how equation 2 works. The ##i=j## terms will cancel and the ##v_0## terms will also cancel and you'll be left with the same result as equation 1.
Minus sign you are referring to comes from the mistake in equation 1 where you were summing over ##i## when sum is over ##j##: $$c_1 \nabla \bar \mu_1 = K_{11}(v_1 - v_1) + K_{12}(v_2 - v_1) + K_{13}(v_3 - v_1)$$
 
  • Like
Likes   Reactions: TeethWhitener
Ok then, thanks. Do you see how equation 2 comes from equation 1 then?
 
TeethWhitener said:
Ok then, thanks. Do you see how equation 2 comes from equation 1 then?
Well, kind of. There is no doubt that equation 2 is correct. I agree with what you wrote about which terms cancel and why. So, I guess I see it, but if you asked me to derive it from equation 1, I'm not sure I would be able to do it.
 
TeethWhitener said:
Ok then, thanks. Do you see how equation 2 comes from equation 1 then?
I have an additional question which builds upon what we've already discussed.

Equation 2 can be inverted so as to express velocity differences (flux of the component) as a function of driving forces explicitly. Equation is again only written without going into much detail regarding derivation:

$$ v_j - v_0 = - \sum_{k \neq 0} L_{jk}^0 c_k \nabla \bar \mu_k \text{,}\quad j \neq 0 \tag{3} $$

where $$L^0 = -(M^0)^{-1}$$

##M^0## is a submatrix of ##M## obtained by removing a row and a column corresponding to ion ##0## from ##M##. Also, it is to be noted that ##L^0## is symmetric due to the fact that ##K_{ij}## is symmetric: $$L_{ij}^0 = L_{ji}^0 $$

I can't really figure out how was equation 3 derived from equation 2. It must have something to do with inverting matrices, but I think I miss some piece of math needed to this correctly.
 
This is basically just a matrix equation written in component form. In equation 1, you have a matrix ##\mathbf{M}## with components ##M_{ij}## and you’re multiplying it by a column vector ##\mathbf{v}## with components ##v_j-v_0## to get a vector ##\mathbf{c\nabla\bar{\mu}}## with components ##c_i\nabla\bar{\mu}_i##. In matrix notation, equation 1 looks like
$$
\begin{pmatrix}
c_1\nabla\bar{\mu}_1 \\
\vdots \\
c_n\nabla\bar{\mu}_n
\end{pmatrix}
=
\begin{pmatrix}
M_{11} & \cdots & M_{1n} \\
\vdots & \ddots & \vdots \\
M_{n1} & \cdots & M_{nn}
\end{pmatrix}
\begin{pmatrix}
v_1-v_0 \\
\vdots \\
v_n-v_0
\end{pmatrix}
$$
Or in more compact notation:
$$\mathbf{c\nabla\bar{\mu}}=\mathbf{M}\mathbf{v}$$
This equation is easily inverted by left multiplying by the inverse matrix of ##\mathbf{M}## to give
$$\mathbf{M}^{-1}\mathbf{c\nabla\bar{\mu}}=\mathbf{v}$$
Equation 3 is just this equation in component form.
 
  • Like
Likes   Reactions: Dario56
  • #10
TeethWhitener said:
This is basically just a matrix equation written in component form. In equation 1, you have a matrix ##\mathbf{M}## with components ##M_{ij}## and you’re multiplying it by a column vector ##\mathbf{v}## with components ##v_j-v_0## to get a vector ##\mathbf{c\nabla\bar{\mu}}## with components ##c_i\nabla\bar{\mu}_i##. In matrix notation, equation 1 looks like
$$
\begin{pmatrix}
c_1\nabla\bar{\mu}_1 \\
\vdots \\
c_n\nabla\bar{\mu}_n
\end{pmatrix}
=
\begin{pmatrix}
M_{11} & \cdots & M_{1n} \\
\vdots & \ddots & \vdots \\
M_{n1} & \cdots & M_{nn}
\end{pmatrix}
\begin{pmatrix}
v_1-v_0 \\
\vdots \\
v_n-v_0
\end{pmatrix}
$$
Or in more compact notation:
$$\mathbf{c\nabla\bar{\mu}}=\mathbf{M}\mathbf{v}$$
This equation is easily inverted by left multiplying by the inverse matrix of ##\mathbf{M}## to give
$$\mathbf{M}^{-1}\mathbf{c\nabla\bar{\mu}}=\mathbf{v}$$
Equation 3 is just this equation in component form.
Concise and correct. Thank you. I knew it must have something to do with the matrix inversion. I do know this stuff, but for some reason I couldn't figure it out.
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 20 ·
Replies
20
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K