- #1
kntsy
- 82
- 0
"Open" set challenging question and mind-blogging concept!Welcome.
This statement is correct.
[tex]\left\{\left[1,3-\frac{1}{n}\right)\right\}_{n\in\mathbb Z} \text {is an "OPEN" cover of}\left[1,3\right)[/tex]
BUT WHY OPEN?
There are 3 options.
1.All [itex]\left[1,3-\frac{1}{n}\right)[/itex] is the open set in [itex]\mathbb Z[/itex];
or
2.All [itex]\left[1,3-\frac{1}{n}\right)[/itex] is the open set in [itex]\left[1,3\right)[/itex].
or
3.All [itex]\left[1,3-\frac{1}{n}\right)[/itex] is the open set in [itex]\mathbb R^{1}[/itex]
Which one?
This statement is correct.
[tex]\left\{\left[1,3-\frac{1}{n}\right)\right\}_{n\in\mathbb Z} \text {is an "OPEN" cover of}\left[1,3\right)[/tex]
BUT WHY OPEN?
There are 3 options.
1.All [itex]\left[1,3-\frac{1}{n}\right)[/itex] is the open set in [itex]\mathbb Z[/itex];
or
2.All [itex]\left[1,3-\frac{1}{n}\right)[/itex] is the open set in [itex]\left[1,3\right)[/itex].
or
3.All [itex]\left[1,3-\frac{1}{n}\right)[/itex] is the open set in [itex]\mathbb R^{1}[/itex]
Which one?
Last edited: