I Operator acting on ket state n

  • I
  • Thread starter Thread starter Jean-Mathys du bois
  • Start date Start date
  • Tags Tags
    Operator State
Jean-Mathys du bois
Messages
2
Reaction score
0
TL;DR Summary
how does the operator (N+1)^-1/2 α act on a |n> state of harmonic osciliator? N is the number operator N|n>=n|n> and α anihilation operator
I tried playing with the number's operator eigenvalues equation but couldn't get anywhere, can s/b help me out?
 
Physics news on Phys.org
If $$\hat{N}\left|n\right\rangle =n\left|n\right\rangle $$
then, by the very definition of function of operators, we have that
$$f(\hat{N})\left|n\right\rangle =f(n)\left|n\right\rangle $$
 
  • Like
Likes DrClaude and vanhees71
Jean-Mathys du bois said:
Summary:: how does the operator (N+1)^-1/2 α act on a |n> state of harmonic osciliator? N is the number operator N|n>=n|n> and α anihilation operator

I tried playing with the number's operator eigenvalues equation but couldn't get anywhere, can s/b help me out?
To make sense of a non-polynomial function of an operator, you can interpret it as a Taylor series:
$$(1 + N)^{-1/2} = 1 - \frac 1 2 N + \frac 3 8 N^2 \dots $$
 
The operator (N+1)^-1/2 α , i think is called Susskind
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top