Operator Norm for Linear Transformations: Browder Ch. 8, Section 8.1, Page 179

  • Context: MHB 
  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Linear Norm Section
Click For Summary

Discussion Overview

The discussion revolves around the concept of the "operator norm" for linear transformations as presented in Andrew Browder's book "Mathematical Analysis: An Introduction," specifically in Chapter 8, Section 8.1. Participants seek clarification on the equivalence of two definitions of the operator norm and the conditions under which the norm is finite.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Peter asks for a rigorous demonstration of why the operator norm defined as the supremum of the transformation's output over unit inputs is equivalent to the infimum of constants that bound the transformation's output relative to its input.
  • In response, participants provide detailed reasoning involving linearity of transformations and inequalities, but the discussion remains open-ended regarding the clarity of the equivalence.
  • Peter also requests clarification on why the operator norm is necessarily finite, prompting participants to reference the standard basis of \(\mathbb{R}^n\) and the Cauchy-Schwarz inequality to argue that the norm can be bounded.
  • Some participants reiterate the reasoning behind the finiteness of the operator norm, emphasizing the dependence on the properties of linear transformations and the standard basis.

Areas of Agreement / Disagreement

Participants generally agree on the definitions and properties of the operator norm, but there is no consensus on the clarity of the proofs provided for its equivalence and finiteness. The discussion remains unresolved as participants continue to seek further clarification and understanding.

Contextual Notes

The discussion highlights potential limitations in the assumptions made about linear transformations and the definitions of norms, as well as the need for rigorous mathematical justification in the context of operator norms.

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
The "Operator Norm" for Linear Transfomations ... Browder, page 179, Section 8.1, Ch. 8 ... ...

I am reader Andrew Browder's book: "Mathematical Analysis: An Introduction" ... ...

I am currently reading Chapter 8: Differentiable Maps and am specifically focused on Section 8.1 Linear Algebra ...

I need some help in fully understanding some remarks by Browder concerning the "operator norm" for linear transformations ...

The relevant notes form Browder read as follows:https://www.physicsforums.com/attachments/7451
My questions regarding the above text by Browder are as follows:
Question 1

In the above notes from Browder we read the following:

" ... ... A perhaps more natural way to define the distance between linear transformations is by using the so-called "operator norm" defined by

$$\lvert \lvert T \rvert \rvert = \text{ sup} \{ \lvert Tv \rvert \ : \ v \in \mathbb{R}^n , \ \lvert v \rvert \le 1 \}
$$It is not hard to verify that this definition is equivalent to $$\lvert \lvert T \rvert \rvert = \text{ inf} \{ C \ge 0 \ : \ \lvert Tv \rvert \le C \lvert v \rvert \text{ for all } v \in \mathbb{R}^n \} $$

... ... "
Can someone please demonstrate rigorously exactly why/how

$$\lvert \lvert T \rvert \rvert = \text{ sup} \{ \lvert Tv \rvert \ : \ v \in \mathbb{R}^n , \ \lvert v \rvert \le 1 \}
$$

is equivalent to

$$\lvert \lvert T \rvert \rvert = \text{ inf} \{ C \ge 0 \ : \ \lvert Tv \rvert \le C \lvert v \rvert \text{ for all } v \in \mathbb{R}^n \}
$$

... ... ... ?

Question 2


In the above notes from Browder we read the following:

" ... ... The finiteness of $$\lvert \lvert T \rvert \rvert$$ is easy to see ... "Can someone please rigorously demonstrate why/how $$\lvert \lvert T \rvert \rvert$$ is necessarily finite ... ?
Help will be much appreciated ... ...

Peter
 
Last edited:
Physics news on Phys.org
Re: The "Operator Norm" for Linear Transfomations ... Browder, page 179, Section 8.1, Ch. 8 ... ...

Hi Peter,
Peter said:
Question 1

In the above notes from Browder we read the following:

" ... ... A perhaps more natural way to define the distance between linear transformations is by using the so-called "operator norm" defined by

$$\lvert \lvert T \rvert \rvert = \text{ sup} \{ \lvert Tv \rvert \ : \ v \in \mathbb{R}^n , \ \lvert v \rvert \le 1 \}
$$It is not hard to verify that this definition is equivalent to $$\lvert \lvert T \rvert \rvert = \text{ inf} \{ C \ge 0 \ : \ \lvert Tv \rvert \le C \lvert v \rvert \text{ for all } v \in \mathbb{R}^n \} $$

... ... "
Can someone please demonstrate rigorously exactly why/how

$$\lvert \lvert T \rvert \rvert = \text{ sup} \{ \lvert Tv \rvert \ : \ v \in \mathbb{R}^n , \ \lvert v \rvert \le 1 \}
$$

is equivalent to

$$\lvert \lvert T \rvert \rvert = \text{ inf} \{ C \ge 0 \ : \ \lvert Tv \rvert \le C \lvert v \rvert \text{ for all } v \in \mathbb{R}^n \}
$$

... ... ... ?
If $v\in \Bbb R^n - \{\bf 0\}$, then $\dfrac{v}{\lvert v\rvert}$ has norm $1$, so $\left\lvert T\left(\dfrac{v}{\lvert v\rvert}\right)\right\rvert \le \|T\|$. Since $T$ is linear, $T\left(\dfrac{v}{\lvert v\rvert}\right) = \dfrac{1}{\lvert v\rvert}T(v)$. Thus $\lvert T(v)\rvert \le \|T\|\lvert v\rvert$. Since $T$ is linear, $T(0) = 0$, so the inequality $\lvert T(v)\rvert \le \|T\|\lvert v\rvert$ holds for $v = 0$. Since $\lvert Tv\rvert \le \|T\|\lvert v\rvert$ for all $v\in \Bbb R^n$, then $\|T\|$ is an element of the set $\{C\ge 0 : \text{$\lvert Tv\rvert \le C\lvert v\rvert$ for all $v\in \Bbb R^n$}\}$. Therefore,
$$\|T\| \ge \inf\{C\ge 0: \text{$\lvert Tv\rvert \le C\lvert v\rvert$ for all $v\in \Bbb R^n$}\}\tag{1}\label{eq1}$$
On the other hand, if $C > 0$ such that $\lvert Tv\rvert \le C\lvert v\rvert$ for all $v\in \Bbb R^n$. In particular, for all $v\in \Bbb R^n$ with $\lvert v\rvert \le 1$, $\lvert Tv\rvert \le C$. Hence, $\sup_{\lvert v\rvert \le 1} \lvert Tv\rvert \le C$, i.e., $\|T\| \le C$. This shows that $\|T\|$ is a lower bound for the set $\{C\ge 0: \text{$\lvert Tv\rvert \le C\lvert v\rvert$ for all $v\in \Bbb R^n$}\}$. Hence, $$\|T\| \le \inf\{C\ge 0 : \text{$\lvert Tv\rvert \le C\lvert v\rvert$ for all $v\in \Bbb R^n$}\}\tag{2}\label{eq2}$$ By inequalities \eqref{eq1} and \eqref{eq2}, the result follows.
Peter said:
Question 2


In the above notes from Browder we read the following:

" ... ... The finiteness of $$\lvert \lvert T \rvert \rvert$$ is easy to see ... "Can someone please rigorously demonstrate why/how $$\lvert \lvert T \rvert \rvert$$ is necessarily finite ... ?

Let $\mathbf{e}_1,\ldots, \mathbf{e}_n$ be the standard basis of $\Bbb R^n$. For all $\mathbf{v} = (v_1,\ldots, v_n)\in \Bbb R^n$, $$T(\mathbf{v}) = T\left(\sum_{i = 1}^n v_i \mathbf{e}_i\right) = \sum_{i = 1}^n v_i T(\mathbf{e}_i) = \mathbf{v}\cdot (T(\mathbf{e}_1),\ldots, T(\mathbf{e}_n))$$ The Cauchy-Schwarz inequality gives $\lvert Tv\rvert \le C\lvert \mathbf{v}\rvert$ where $C$ is the norm of the vector $(T(\mathbf{e}_1),\ldots, T(\mathbf{e}_n))$. Note the $C$ a constant independent of $\mathbf{v}$. Since $\mathbf{v}$ was arbitrary, $\|T\| \le C$. Therefore, $\|T\|$ is finite.
 
Re: The "Operator Norm" for Linear Transfomations ... Browder, page 179, Section 8.1, Ch. 8 ... ...

Euge said:
Hi Peter,If $v\in \Bbb R^n - \{\bf 0\}$, then $\dfrac{v}{\lvert v\rvert}$ has norm $1$, so $\left\lvert T\left(\dfrac{v}{\lvert v\rvert}\right)\right\rvert \le \|T\|$. Since $T$ is linear, $T\left(\dfrac{v}{\lvert v\rvert}\right) = \dfrac{1}{\lvert v\rvert}T(v)$. Thus $\lvert T(v)\rvert \le \|T\|\lvert v\rvert$. Since $T$ is linear, $T(0) = 0$, so the inequality $\lvert T(v)\rvert \le \|T\|\lvert v\rvert$ holds for $v = 0$. Since $\lvert Tv\rvert \le \|T\|\lvert v\rvert$ for all $v\in \Bbb R^n$, then $\|T\|$ is an element of the set $\{C\ge 0 : \text{$\lvert Tv\rvert \le C\lvert v\rvert$ for all $v\in \Bbb R^n$}\}$. Therefore,
$$\|T\| \ge \inf\{C\ge 0: \text{$\lvert Tv\rvert \le C\lvert v\rvert$ for all $v\in \Bbb R^n$}\}\tag{1}\label{eq1}$$
On the other hand, if $C > 0$ such that $\lvert Tv\rvert \le C\lvert v\rvert$ for all $v\in \Bbb R^n$. In particular, for all $v\in \Bbb R^n$ with $\lvert v\rvert \le 1$, $\lvert Tv\rvert \le C$. Hence, $\sup_{\lvert v\rvert \le 1} \lvert Tv\rvert \le C$, i.e., $\|T\| \le C$. This shows that $\|T\|$ is a lower bound for the set $\{C\ge 0: \text{$\lvert Tv\rvert \le C\lvert v\rvert$ for all $v\in \Bbb R^n$}\}$. Hence, $$\|T\| \le \inf\{C\ge 0 : \text{$\lvert Tv\rvert \le C\lvert v\rvert$ for all $v\in \Bbb R^n$}\}\tag{2}\label{eq2}$$ By inequalities \eqref{eq1} and \eqref{eq2}, the result follows.Let $\mathbf{e}_1,\ldots, \mathbf{e}_n$ be the standard basis of $\Bbb R^n$. For all $\mathbf{v} = (v_1,\ldots, v_n)\in \Bbb R^n$, $$T(\mathbf{v}) = T\left(\sum_{i = 1}^n v_i \mathbf{e}_i\right) = \sum_{i = 1}^n v_i T(\mathbf{e}_i) = \mathbf{v}\cdot (T(\mathbf{e}_1),\ldots, T(\mathbf{e}_n))$$ The Cauchy-Schwarz inequality gives $\lvert Tv\rvert \le C\lvert \mathbf{v}\rvert$ where $C$ is the norm of the vector $(T(\mathbf{e}_1),\ldots, T(\mathbf{e}_n))$. Note the $C$ a constant independent of $\mathbf{v}$. Since $\mathbf{v}$ was arbitrary, $\|T\| \le C$. Therefore, $\|T\|$ is finite.

Thanks so much Euge ...

Really appreciate your help on this matter ...

Just working through what you have written ...

Thanks again ...

Peter
 
Re: The "Operator Norm" for Linear Transfomations ... Browder, page 179, Section 8.1, Ch. 8 ... ...

Euge said:
Hi Peter,If $v\in \Bbb R^n - \{\bf 0\}$, then $\dfrac{v}{\lvert v\rvert}$ has norm $1$, so $\left\lvert T\left(\dfrac{v}{\lvert v\rvert}\right)\right\rvert \le \|T\|$. Since $T$ is linear, $T\left(\dfrac{v}{\lvert v\rvert}\right) = \dfrac{1}{\lvert v\rvert}T(v)$. Thus $\lvert T(v)\rvert \le \|T\|\lvert v\rvert$. Since $T$ is linear, $T(0) = 0$, so the inequality $\lvert T(v)\rvert \le \|T\|\lvert v\rvert$ holds for $v = 0$. Since $\lvert Tv\rvert \le \|T\|\lvert v\rvert$ for all $v\in \Bbb R^n$, then $\|T\|$ is an element of the set $\{C\ge 0 : \text{$\lvert Tv\rvert \le C\lvert v\rvert$ for all $v\in \Bbb R^n$}\}$. Therefore,
$$\|T\| \ge \inf\{C\ge 0: \text{$\lvert Tv\rvert \le C\lvert v\rvert$ for all $v\in \Bbb R^n$}\}\tag{1}\label{eq1}$$
On the other hand, if $C > 0$ such that $\lvert Tv\rvert \le C\lvert v\rvert$ for all $v\in \Bbb R^n$. In particular, for all $v\in \Bbb R^n$ with $\lvert v\rvert \le 1$, $\lvert Tv\rvert \le C$. Hence, $\sup_{\lvert v\rvert \le 1} \lvert Tv\rvert \le C$, i.e., $\|T\| \le C$. This shows that $\|T\|$ is a lower bound for the set $\{C\ge 0: \text{$\lvert Tv\rvert \le C\lvert v\rvert$ for all $v\in \Bbb R^n$}\}$. Hence, $$\|T\| \le \inf\{C\ge 0 : \text{$\lvert Tv\rvert \le C\lvert v\rvert$ for all $v\in \Bbb R^n$}\}\tag{2}\label{eq2}$$ By inequalities \eqref{eq1} and \eqref{eq2}, the result follows.Let $\mathbf{e}_1,\ldots, \mathbf{e}_n$ be the standard basis of $\Bbb R^n$. For all $\mathbf{v} = (v_1,\ldots, v_n)\in \Bbb R^n$, $$T(\mathbf{v}) = T\left(\sum_{i = 1}^n v_i \mathbf{e}_i\right) = \sum_{i = 1}^n v_i T(\mathbf{e}_i) = \mathbf{v}\cdot (T(\mathbf{e}_1),\ldots, T(\mathbf{e}_n))$$ The Cauchy-Schwarz inequality gives $\lvert Tv\rvert \le C\lvert \mathbf{v}\rvert$ where $C$ is the norm of the vector $(T(\mathbf{e}_1),\ldots, T(\mathbf{e}_n))$. Note the $C$ a constant independent of $\mathbf{v}$. Since $\mathbf{v}$ was arbitrary, $\|T\| \le C$. Therefore, $\|T\|$ is finite.
I am revising question 1 above ... where Euge is proving that $$\lvert \lvert T \rvert \rvert = \text{ sup} \{ \lvert Tv \rvert \ : \ v \in \mathbb{R}^n , \ \lvert v \rvert \le 1 \}
$$is equivalent to $$\lvert \lvert T \rvert \rvert = \text{ inf} \{ C \ge 0 \ : \ \lvert Tv \rvert \le C \lvert v \rvert \text{ for all } v \in \mathbb{R}^n \}
$$In the above proof by Euge ... Euge writes the following:" ... ... In particular, for all $v\in \Bbb R^n$ with $\lvert v\rvert \le 1$, $\lvert Tv\rvert \le C$. Hence, $\sup_{\lvert v\rvert \le 1} \lvert Tv\rvert \le C$, i.e., $\|T\| \le C$. ... ... "

Can someone please formally and rigorously demonstrate that ...if ... for all $v\in \Bbb R^n$ with $\lvert v\rvert \le 1$, $\lvert Tv\rvert \le C$ ... ...... it then follows that ... $\sup_{\lvert v\rvert \le 1} \lvert Tv\rvert \le C$ ... ... (It seems highly plausible ... but how do you rigorously prove it ... ? )
... help will be much appreciated ...

Peter
 
Last edited:
Re: The "Operator Norm" for Linear Transfomations ... Browder, page 179, Section 8.1, Ch. 8 ... ...

Peter said:
Can someone please formally and rigorously demonstrate that ...if ... for all $v\in \Bbb R^n$ with $\lvert v\rvert \le 1$, $\lvert Tv\rvert \le C$ ... ...... it then follows that ... $\sup_{\lvert v\rvert \le 1} \lvert Tv\rvert \le C$ .
The statement "for all $v\in \Bbb R^n$ with $\lvert v\rvert \le 1$, $\lvert Tv\rvert \le C$" says that $C$ is an upper bound for the set $\{|Tv| : v\in \Bbb R^n,|v|\leqslant1\}$. The number $\sup_{\lvert v\rvert \le 1} \lvert Tv\rvert$ is the supremum, or least upper bound, of that same set. By definition, the least upper bound is less than or equal to any other upper bound. Therefore $\sup_{\lvert v\rvert \le 1} \lvert Tv\rvert \leqslant C$.
 
Re: The "Operator Norm" for Linear Transfomations ... Browder, page 179, Section 8.1, Ch. 8 ... ...

Opalg said:
The statement "for all $v\in \Bbb R^n$ with $\lvert v\rvert \le 1$, $\lvert Tv\rvert \le C$" says that $C$ is an upper bound for the set $\{|Tv| : v\in \Bbb R^n,|v|\leqslant1\}$. The number $\sup_{\lvert v\rvert \le 1} \lvert Tv\rvert$ is the supremum, or least upper bound, of that same set. By definition, the least upper bound is less than or equal to any other upper bound. Therefore $\sup_{\lvert v\rvert \le 1} \lvert Tv\rvert \leqslant C$.

Thanks Opalg ...

That certainly clears up the issue ...

Peter
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
Replies
2
Views
1K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K