Optimal Solution for Linear Programming Problem

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on solving a linear programming problem using the simplex method, specifically maximizing the function $$\max (-x_1+2x_2-3x_3)$$ subject to given constraints. The basic feasible solution identified is $(10,0,0,0,1,8)$, leading to an optimal solution of $-\frac{19}{2}$ at the vertex $\left( \frac{21}{2}, \frac{1}{2}, 0, 0, 0, \frac{15}{2}\right)$. The participants confirm the correctness of the solution and clarify the significance of the tableau's bottom row, particularly the value next to $z$.

PREREQUISITES
  • Understanding of linear programming concepts
  • Familiarity with the simplex method
  • Knowledge of tableau representation in linear programming
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the simplex method in detail, focusing on tableau transformations
  • Learn about duality in linear programming
  • Explore sensitivity analysis in linear programming problems
  • Investigate software tools for linear programming, such as MATLAB or Python's SciPy library
USEFUL FOR

Students, researchers, and professionals in operations research, optimization analysts, and anyone involved in solving linear programming problems using the simplex method.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)
I want to find the optimal solution using the simplex method of the following linear programming problem:

$$ \max (-x_1+2x_2-3x_3) \\ x_1-x_2+x_3+2x_4=10 \\ 2x_2-x_3 \leq 1 \\ x_2+ 2x_4 \leq 8 \\ x_i \geq 0, i=1,2,3,4$$

$A=\begin{bmatrix}
1 & -1 & 1 & 2 & 0 & 0\\
0 & 2 & -1 & 0 & 1 & 0\\
0 & 1 & 0 & 2 & 0 & 1
\end{bmatrix}$

A basic feasible non degenerate solution is $(10,0,0,0,1,8)$.

$\begin{bmatrix}
B & c_B & b & P_1 & P_2 & P_3 & P_4 & P_5 & P_6 & \theta & \\
P_1 & -1 & 10 & 1 & -1 & 1 & 2 & 0 & 0 & - & L_1\\
P_5 & 0 & 1 & 0 & 2 & -1 & 0 & 1 & 0 & \frac{1}{2} & L_2\\
P_6 & 0 & 8 & 0 & 1 & 0 & 2 & 0 & 1 & \frac{8}{1} & L_3 \\
& z & 0 & 1 & -2 & 3 & 0 & 0 & 0 & & L_4
\end{bmatrix}$Since $z_2-c_2<0$, $P_2$ will get in the basis and $P_5$ gets out of the basis.

So we get the following tableau:$\begin{bmatrix}
B & c_B & b & P_1 & P_2 & P_3 & P_4 & P_5 & P_6 & \theta & \\
P_1 & -1 & \frac{21}{2} & 1 & 0 & \frac{1}{2} & 2 & \frac{1}{2} & 0 & & L_1'=L_1+L_2'\\
P_2 & 2 & \frac{1}{2} & 0 & 1 & -\frac{1}{2} & 0 & \frac{1}{2} & 0 & & L_2'=\frac{L_2}{2}\\
P_6 & 0 & \frac{15}{2} & 0 & 0 & \frac{1}{2} & 2 & -\frac{1}{2} & 1 & & L_3'=L_3-L_2' \\
& z & 1 & 1 & 0 & 2 & 0 & 1 & 0 & & L_4'=L_4+2L_2'
\end{bmatrix}$

Thus , $-\frac{19}{2}$ is the optimal solution and is achieved at the vertex $\left( \frac{21}{2}, \frac{1}{2}, 0,0, ,0, \frac{15}{2}\right)$.

Is it right or have I done something wrong? (Thinking)
 
Physics news on Phys.org
Hey evinda! (Smile)

It looks fine to me. (Mmm)
 
I like Serena said:
Hey evinda! (Smile)

It looks fine to me. (Mmm)

Nice! What does the bottom row mean in this case and specifically the 1 next to z? (Thinking)
 
evinda said:
Nice! What does the bottom row mean in this case and specifically the 1 next to z? (Thinking)

The original objective function is:
$$z=-x_1+2x_3-3x_3= -\frac {21} 2 + 2\cdot \frac 12 = -\frac {19}2$$
It is inserted into the original tableau as:
$$z+x_1-2x_2+3x_3 = 0$$
After the transformations it is:
$$z+x_1+2x_3+x_5=1 \Rightarrow z = 1 - x_1 -2x_3-x_5 = 1 - \frac {21}2 = -\frac{19}2$$
The $1$ next to the $z$ corresponds with the right hand side, just like it does for the other equations. (Mmm)
 
I like Serena said:
The original objective function is:
$$z=-x_1+2x_3-3x_3= -\frac {21} 2 + 2\cdot \frac 12 = -\frac {19}2$$
It is inserted into the original tableau as:
$$z+x_1-2x_2+3x_3 = 0$$
After the transformations it is:
$$z+x_1+2x_3+x_5=1 \Rightarrow z = 1 - x_1 -2x_3-x_5 = 1 - \frac {21}2 = -\frac{19}2$$
The $1$ next to the $z$ corresponds with the right hand side, just like it does for the other equations. (Mmm)

I see... Thanks a lot! (Nod)
 

Similar threads

  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 32 ·
2
Replies
32
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
28
Views
5K
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K