MHB Optimal Solution for Linear Programming Problem

  • Thread starter Thread starter evinda
  • Start date Start date
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)
I want to find the optimal solution using the simplex method of the following linear programming problem:

$$ \max (-x_1+2x_2-3x_3) \\ x_1-x_2+x_3+2x_4=10 \\ 2x_2-x_3 \leq 1 \\ x_2+ 2x_4 \leq 8 \\ x_i \geq 0, i=1,2,3,4$$

$A=\begin{bmatrix}
1 & -1 & 1 & 2 & 0 & 0\\
0 & 2 & -1 & 0 & 1 & 0\\
0 & 1 & 0 & 2 & 0 & 1
\end{bmatrix}$

A basic feasible non degenerate solution is $(10,0,0,0,1,8)$.

$\begin{bmatrix}
B & c_B & b & P_1 & P_2 & P_3 & P_4 & P_5 & P_6 & \theta & \\
P_1 & -1 & 10 & 1 & -1 & 1 & 2 & 0 & 0 & - & L_1\\
P_5 & 0 & 1 & 0 & 2 & -1 & 0 & 1 & 0 & \frac{1}{2} & L_2\\
P_6 & 0 & 8 & 0 & 1 & 0 & 2 & 0 & 1 & \frac{8}{1} & L_3 \\
& z & 0 & 1 & -2 & 3 & 0 & 0 & 0 & & L_4
\end{bmatrix}$Since $z_2-c_2<0$, $P_2$ will get in the basis and $P_5$ gets out of the basis.

So we get the following tableau:$\begin{bmatrix}
B & c_B & b & P_1 & P_2 & P_3 & P_4 & P_5 & P_6 & \theta & \\
P_1 & -1 & \frac{21}{2} & 1 & 0 & \frac{1}{2} & 2 & \frac{1}{2} & 0 & & L_1'=L_1+L_2'\\
P_2 & 2 & \frac{1}{2} & 0 & 1 & -\frac{1}{2} & 0 & \frac{1}{2} & 0 & & L_2'=\frac{L_2}{2}\\
P_6 & 0 & \frac{15}{2} & 0 & 0 & \frac{1}{2} & 2 & -\frac{1}{2} & 1 & & L_3'=L_3-L_2' \\
& z & 1 & 1 & 0 & 2 & 0 & 1 & 0 & & L_4'=L_4+2L_2'
\end{bmatrix}$

Thus , $-\frac{19}{2}$ is the optimal solution and is achieved at the vertex $\left( \frac{21}{2}, \frac{1}{2}, 0,0, ,0, \frac{15}{2}\right)$.

Is it right or have I done something wrong? (Thinking)
 
Physics news on Phys.org
Hey evinda! (Smile)

It looks fine to me. (Mmm)
 
I like Serena said:
Hey evinda! (Smile)

It looks fine to me. (Mmm)

Nice! What does the bottom row mean in this case and specifically the 1 next to z? (Thinking)
 
evinda said:
Nice! What does the bottom row mean in this case and specifically the 1 next to z? (Thinking)

The original objective function is:
$$z=-x_1+2x_3-3x_3= -\frac {21} 2 + 2\cdot \frac 12 = -\frac {19}2$$
It is inserted into the original tableau as:
$$z+x_1-2x_2+3x_3 = 0$$
After the transformations it is:
$$z+x_1+2x_3+x_5=1 \Rightarrow z = 1 - x_1 -2x_3-x_5 = 1 - \frac {21}2 = -\frac{19}2$$
The $1$ next to the $z$ corresponds with the right hand side, just like it does for the other equations. (Mmm)
 
I like Serena said:
The original objective function is:
$$z=-x_1+2x_3-3x_3= -\frac {21} 2 + 2\cdot \frac 12 = -\frac {19}2$$
It is inserted into the original tableau as:
$$z+x_1-2x_2+3x_3 = 0$$
After the transformations it is:
$$z+x_1+2x_3+x_5=1 \Rightarrow z = 1 - x_1 -2x_3-x_5 = 1 - \frac {21}2 = -\frac{19}2$$
The $1$ next to the $z$ corresponds with the right hand side, just like it does for the other equations. (Mmm)

I see... Thanks a lot! (Nod)
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...

Similar threads

Back
Top