Optimizing with Golden Section Method: Choosing Alpha for Maximum Efficiency

  • Thread starter Thread starter ver_mathstats
  • Start date Start date
  • Tags Tags
    Method Section
ver_mathstats
Messages
258
Reaction score
21
Homework Statement
You are at the point (0,1). Find the minimum of the function in the direction (line) (1, 2)^T using
the Golden-Section line-search algorithm on the step-length interval [0, 1]. Stop when the length of
the interval is less than 0.2. Note: step-length interval could be described by the parameter t, and,
so, all the points along the direction (1, 2)^T
can be expressed as (0, 1) + t · (1, 2).
Relevant Equations
Function is: f(x1,x2)=(x2-x1^2)^2+e^x1^2
Golden Ratio (GR):0.618
My function is f(x1,x2)=(x2-x1 2)2+ex1^2
I understand the equation for finding a point is xk+1=xkkdk, where dk=(0,1) and x0=(0,1). For the first step I can choose α1=0.618 (GR), but how do we choose α2? In the solution manual I see they chose 0.382, was this just some arbitrary number? My assumption is that it is arbitrary. I understand afterwards I will have to compare f(x1) and f(x2). But I am struggling with how the second α2 was picked, any help would be appreciated.
 
Physics news on Phys.org
I realize this is several months old. What reference or background do you have associated with this problem?

I was not familiar with the Golden Section method, so I looked it up. I found this site, which provides some insight. https://www.geodose.com/2021/06/golden-section-search-python-application-example.html

I need to re-read the article, but I think the 0.382 comes from subtracting 0.618 from 1, though it could come from (0.618)²
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top