I Orbital Period In General Relativity

Click For Summary
The discussion focuses on determining the orbital period in General Relativity using the Schwarzschild metric. For circular orbits, the orbital period can be derived from Kepler's Third Law by substituting the Schwarzschild radius as the orbital radius. The areal radius is defined as r = √(A / 4π), where A is the surface area of the 2-sphere around the central mass. Participants clarify the distinction between the Schwarzschild radius and the physical distance from the central mass. Understanding these concepts is crucial for accurately calculating orbital periods in a relativistic context.
dsaun777
Messages
296
Reaction score
39
What is the orbital period in General Relativity using the Schwarzschild metric? In classical mechanics, it is something like
T=2pi(GnM/a3). Where a is the semi-major axis, this is for a small body orbiting a larger one. I think I have an idea but I am not 100% sure. I am interested in an outside observer far away viewing a small particle m in orbit of some mass M.
 
Physics news on Phys.org
dsaun777 said:
What is the orbital period in General Relativity using the Schwarzschild metric?
For a circular orbit, it's the Kepler's Third Law expression with the Schwarzschild ##r## plugged in as the orbital radius. Note that this is the case even though ##r## is not the same as the physical distance from the center of mass of the central body.
 
  • Like
Likes cianfa72 and PeroK
PeterDonis said:
For a circular orbit, it's the Kepler's Third Law expression with the Schwarzschild ##r## plugged in as the orbital radius. Note that this is the case even though ##r## is not the same as the physical distance from the center of mass of the central body.
Yeah, its the areal radius found by integrating over the radial coordinate from r to rs dr using the metric components related to radial coordinates.
 
dsaun777 said:
Yeah, its the areal radius
Yes, but...

dsaun777 said:
found by integrating over the radial coordinate from r to rs dr using the metric components related to radial coordinates.
...no, that's not what the areal radius is. The areal radius is ##r = \sqrt{A / 4 \pi}##, where ##A## is the surface area of the 2-sphere labeled by ##r## that is centered on the central mass.
 
Moderator's note: Spin-off from another thread due to topic change. In the second link referenced, there is a claim about a physical interpretation of frame field. Consider a family of observers whose worldlines fill a region of spacetime. Each of them carries a clock and a set of mutually orthogonal rulers. Each observer points in the (timelike) direction defined by its worldline's tangent at any given event along it. What about the rulers each of them carries ? My interpretation: each...

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 13 ·
Replies
13
Views
5K
Replies
62
Views
6K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 42 ·
2
Replies
42
Views
5K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K