Elliptical Orbits In The Schwarzschild Metric

  • Thread starter dman12
  • Start date
13
0
I was just wondering how you would go about calculating the proper time for an observer following a freely falling elliptical orbit in a Schwarzschild metric.

I am happy with how to calculate the proper time for a circular orbit and was wondering whether if you had two observers start and end at the same spacetime point, for whom would more proper time elapse- one that followed a circular orbit or one that followed an elliptical orbit?
 

George Jones

Staff Emeritus
Science Advisor
Gold Member
7,225
775
I far as I know, there aren't geodesic (i.e., freely falling) elliptical orbits. There are elliptical orbits that are non-geodesics, but, to calculate the time required for one orbit, more knowledge of the orbit is required.

Also, ven circular orbits do not "start and end at the same spacetime point", as time elapses.
 

PAllen

Science Advisor
7,719
1,074
To add a bit to George Jones answer, non-circular orbits in SC metric never quite close (due to perihelion advance), so they are not ellipses.

You certainly can arrange for a non-circular (near elliptic) free faller to meet a circular orbiter at two events. Then, the general rule is that the if the non-circular trajectory is outside of circular orbit between meetings, the non-circular free faller will age more. Conversely, if you arrange it so non-circular trajectory is inside the circular orbit between meetings, the circular orbiter will age more.
 

George Jones

Staff Emeritus
Science Advisor
Gold Member
7,225
775
In very, very special circumstances, there are (freely falling) closed "spirograph" orbits.

A condition for a closed orbit is that the precession angle divides evenly into an integral multiple of 360 degrees, i.e., n*360/(precession angle) = m, where n and m are integers. If this is true, then the total precession after m aphelia is n times 360 degrees, hence the repetition.
 

Mentz114

Gold Member
5,405
280
Here are a couple of references that might help with the calculation

Uros Kostic, Analytical time-like geodesics in Schwarzschild
space-time. General Relativity and Gravitation, 2012.
Preprint :http://arxiv.org/pdf/1201.5611v1.pdf

G. V. Kraniotis, S. B. Whitehouse,
Precession of Mercury in General Relativity, the Cosmolog-
ical Constant and Jacobi’s Inversion problem.
Preprint http://128.84.158.119/abs/astro-ph/0305181v3
 

Related Threads for: Elliptical Orbits In The Schwarzschild Metric

Replies
13
Views
1K
  • Posted
Replies
3
Views
3K
Replies
3
Views
3K
  • Posted
Replies
21
Views
7K
  • Posted
Replies
1
Views
2K
  • Posted
Replies
10
Views
6K
  • Posted
Replies
23
Views
1K

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top