Orthonormal basis for the poynomials of degree maximum 2

Click For Summary
SUMMARY

The discussion focuses on calculating an orthonormal basis for polynomials of degree at most 2 using the inner product defined as $$\langle f,g\rangle:=\int_{-1}^1(1-x^2)f(x)g(x)\, dx$$. The Gram-Schmidt algorithm was applied to derive the polynomials, resulting in three polynomials: \(q_1 = \frac{3}{4}\), \(q_2 = \frac{15x}{4}\), and \(q_3 = \frac{140}{9}\left (x^2-\frac{3}{20}\right )\). A critical correction was made regarding the normalization of the first polynomial, where the norm should be calculated as the square root of the inner product, ensuring the polynomials are orthonormal.

PREREQUISITES
  • Understanding of inner product spaces and their properties
  • Familiarity with the Gram-Schmidt orthogonalization process
  • Knowledge of polynomial functions and their degrees
  • Basic calculus, specifically integration techniques
NEXT STEPS
  • Study the Gram-Schmidt algorithm in detail, focusing on its application to polynomial functions
  • Learn about inner product spaces and their significance in functional analysis
  • Explore the properties of orthonormal bases in Hilbert spaces
  • Investigate the implications of polynomial orthogonality in approximation theory
USEFUL FOR

Mathematicians, students in advanced calculus or linear algebra courses, and anyone interested in functional analysis and polynomial approximation techniques.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! 😊

We consider the inner product $$\langle f,g\rangle:=\int_{-1}^1(1-x^2)f(x)g(x)\, dx$$ Calculate an orthonormal basis for the poynomials of degree maximum $2$.

I have applied the Gram-Schmidt algorithm as follows:

\begin{align*}\tilde{q}_1:=&1 \\ q_1:=&\frac{\tilde{q}_1}{\|\tilde{q}_1\|}=\frac{1}{\langle \tilde{q}_1, \tilde{q}_1\rangle}=\frac{1}{\int_{-1}^1(1-x^2)\cdot 1\cdot 1\, dx}=\frac{1}{\int_{-1}^1(1-x^2)\, dx}=\frac{1}{\left [x-\frac{x^3}{3}\right]_{-1}^1}=\frac{1}{\left [1-\frac{1^3}{3}\right]-\left [(-1)-\frac{(-1)^3}{3}\right ]}\\ =&\frac{1}{1-\frac{1}{3}+1-\frac{1}{3}}=\frac{1}{2-\frac{2}{3}}=\frac{1}{\frac{4}{3}}=\frac{3}{4}\end{align*}

\begin{align*}\tilde{q}_2:=&x-\langle x, q_1\rangle q_1=x-\left (\int_{-1}^1(1-x^2)\cdot x\cdot \frac{3}{4}\, dx\right )\cdot \frac{3}{4}=x-\frac{3}{4}\cdot \left (\int_{-1}^1(x-x^3)\, dx\right )\cdot \frac{3}{4}=x-\frac{9}{16}\cdot \left [\frac{x^2}{2}-\frac{x^4}{4}\right ]_{-1}^1 \\ = & x-\frac{9}{16}\cdot 0=x\\ q_2:=&\frac{\tilde{q}_2}{\|\tilde{q}_2\|}=\frac{x}{\langle \tilde{q}_2, \tilde{q}_2\rangle}=\frac{x}{\int_{-1}^1(1-x^2)\cdot x\cdot x\, dx}=\frac{x}{\int_{-1}^1(x^2-x^4)\, dx}=\frac{x}{\left [\frac{x^3}{3}-\frac{x^5}{5}\right]_{-1}^1}=\frac{x}{\left [\frac{1}{3}-\frac{1}{5}\right]-\left [-\frac{1}{3}+\frac{1}{5}\right ]}\\ =&\frac{x}{\frac{1}{3}-\frac{1}{5}+\frac{1}{3}-\frac{1}{5}}=\frac{x}{\frac{2}{3}-\frac{2}{5}}=\frac{x}{\frac{4}{15}}=\frac{15x}{4}\end{align*}

\begin{align*}\tilde{q}_3:=&x^2-\langle x^2, q_1\rangle q_1-\langle x^2, q_2\rangle q_2=x^2-\left (\int_{-1}^1(1-x^2)\cdot x^2\cdot \frac{3}{4}\, dx\right )\cdot \frac{3}{4}-\left (\int_{-1}^1(1-x^2)\cdot x^2\cdot \frac{15x}{4}\, dx\right )\cdot \frac{15x}{4}\\ =&x^2-\frac{9}{16}\cdot \int_{-1}^1(x^2-x^4)\, dx-\frac{225x}{16}\cdot \int_{-1}^1(x^3-x^5)\, dx =x^2-\frac{9}{16}\cdot \frac{4}{15}-\frac{225x}{16}\cdot 0=x^2-\frac{3}{20}\\ q_3:=&\frac{\tilde{q}_3}{\|\tilde{q}_3\|}=\frac{x^2-\frac{3}{20}}{\langle \tilde{q}_3, \tilde{q}_3\rangle}=\frac{x^2-\frac{3}{20}}{\int_{-1}^1(1-x^2)\cdot \left (x^2-\frac{3}{20}\right )\cdot \left (x^2-\frac{3}{20}\right )\, dx}=\frac{x^2-\frac{3}{20}}{\int_{-1}^1\left (-x^6+\frac{13x^4}{10}-\frac{129x^2}{400}+\frac{9}{400}\right )\, dx}=\frac{x^2-\frac{3}{20}}{\frac{9}{140}}\\ =&\frac{140}{9}\left (x^2-\frac{3}{20}\right )\end{align*} I wanted to check if I have the correct answers and I noticed (if I am not mistaken) that the polynomials that I found are not orthonormal in respect to the other terms. Have I applied a wrong formula? :unsure:
 
Mathematics news on Phys.org
Hey mathmari!

I see you wrote $\|\tilde q_1\|=\langle\tilde q_1,\tilde q_1\rangle$.
Shouldn't that be $\|\tilde q_1\|=\sqrt{\langle\tilde q_1,\tilde q_1\rangle}$? 🤔
 
Klaas van Aarsen said:
I see you wrote $\|\tilde q_1\|=\langle\tilde q_1,\tilde q_1\rangle$.
Shouldn't that be $\|\tilde q_1\|=\sqrt{\langle\tilde q_1,\tilde q_1\rangle}$? 🤔

Oh yes, you 're right! Now I get the correct result! :giggle:
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 41 ·
2
Replies
41
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K