MHB Orthonormal basis for the poynomials of degree maximum 2

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! 😊

We consider the inner product $$\langle f,g\rangle:=\int_{-1}^1(1-x^2)f(x)g(x)\, dx$$ Calculate an orthonormal basis for the poynomials of degree maximum $2$.

I have applied the Gram-Schmidt algorithm as follows:

\begin{align*}\tilde{q}_1:=&1 \\ q_1:=&\frac{\tilde{q}_1}{\|\tilde{q}_1\|}=\frac{1}{\langle \tilde{q}_1, \tilde{q}_1\rangle}=\frac{1}{\int_{-1}^1(1-x^2)\cdot 1\cdot 1\, dx}=\frac{1}{\int_{-1}^1(1-x^2)\, dx}=\frac{1}{\left [x-\frac{x^3}{3}\right]_{-1}^1}=\frac{1}{\left [1-\frac{1^3}{3}\right]-\left [(-1)-\frac{(-1)^3}{3}\right ]}\\ =&\frac{1}{1-\frac{1}{3}+1-\frac{1}{3}}=\frac{1}{2-\frac{2}{3}}=\frac{1}{\frac{4}{3}}=\frac{3}{4}\end{align*}

\begin{align*}\tilde{q}_2:=&x-\langle x, q_1\rangle q_1=x-\left (\int_{-1}^1(1-x^2)\cdot x\cdot \frac{3}{4}\, dx\right )\cdot \frac{3}{4}=x-\frac{3}{4}\cdot \left (\int_{-1}^1(x-x^3)\, dx\right )\cdot \frac{3}{4}=x-\frac{9}{16}\cdot \left [\frac{x^2}{2}-\frac{x^4}{4}\right ]_{-1}^1 \\ = & x-\frac{9}{16}\cdot 0=x\\ q_2:=&\frac{\tilde{q}_2}{\|\tilde{q}_2\|}=\frac{x}{\langle \tilde{q}_2, \tilde{q}_2\rangle}=\frac{x}{\int_{-1}^1(1-x^2)\cdot x\cdot x\, dx}=\frac{x}{\int_{-1}^1(x^2-x^4)\, dx}=\frac{x}{\left [\frac{x^3}{3}-\frac{x^5}{5}\right]_{-1}^1}=\frac{x}{\left [\frac{1}{3}-\frac{1}{5}\right]-\left [-\frac{1}{3}+\frac{1}{5}\right ]}\\ =&\frac{x}{\frac{1}{3}-\frac{1}{5}+\frac{1}{3}-\frac{1}{5}}=\frac{x}{\frac{2}{3}-\frac{2}{5}}=\frac{x}{\frac{4}{15}}=\frac{15x}{4}\end{align*}

\begin{align*}\tilde{q}_3:=&x^2-\langle x^2, q_1\rangle q_1-\langle x^2, q_2\rangle q_2=x^2-\left (\int_{-1}^1(1-x^2)\cdot x^2\cdot \frac{3}{4}\, dx\right )\cdot \frac{3}{4}-\left (\int_{-1}^1(1-x^2)\cdot x^2\cdot \frac{15x}{4}\, dx\right )\cdot \frac{15x}{4}\\ =&x^2-\frac{9}{16}\cdot \int_{-1}^1(x^2-x^4)\, dx-\frac{225x}{16}\cdot \int_{-1}^1(x^3-x^5)\, dx =x^2-\frac{9}{16}\cdot \frac{4}{15}-\frac{225x}{16}\cdot 0=x^2-\frac{3}{20}\\ q_3:=&\frac{\tilde{q}_3}{\|\tilde{q}_3\|}=\frac{x^2-\frac{3}{20}}{\langle \tilde{q}_3, \tilde{q}_3\rangle}=\frac{x^2-\frac{3}{20}}{\int_{-1}^1(1-x^2)\cdot \left (x^2-\frac{3}{20}\right )\cdot \left (x^2-\frac{3}{20}\right )\, dx}=\frac{x^2-\frac{3}{20}}{\int_{-1}^1\left (-x^6+\frac{13x^4}{10}-\frac{129x^2}{400}+\frac{9}{400}\right )\, dx}=\frac{x^2-\frac{3}{20}}{\frac{9}{140}}\\ =&\frac{140}{9}\left (x^2-\frac{3}{20}\right )\end{align*} I wanted to check if I have the correct answers and I noticed (if I am not mistaken) that the polynomials that I found are not orthonormal in respect to the other terms. Have I applied a wrong formula? :unsure:
 
Mathematics news on Phys.org
Hey mathmari!

I see you wrote $\|\tilde q_1\|=\langle\tilde q_1,\tilde q_1\rangle$.
Shouldn't that be $\|\tilde q_1\|=\sqrt{\langle\tilde q_1,\tilde q_1\rangle}$? šŸ¤”
 
Klaas van Aarsen said:
I see you wrote $\|\tilde q_1\|=\langle\tilde q_1,\tilde q_1\rangle$.
Shouldn't that be $\|\tilde q_1\|=\sqrt{\langle\tilde q_1,\tilde q_1\rangle}$? šŸ¤”

Oh yes, you 're right! Now I get the correct result! :giggle:
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a ā€œconvenient notationā€ he referred to as a ā€œdelta functionā€ which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top