Oscillation of bead with gravitating masses

AI Thread Summary
The discussion focuses on the application of Taylor series expansion to gravitational potential energy, specifically the need to take the second derivative to understand the behavior of the system near equilibrium. The potential energy is shown to be an even function, indicating symmetry and a local minimum at x=0, which leads to simple harmonic motion. The second derivative's positivity confirms the presence of a restoring force akin to a spring-mass system. Participants clarify the importance of using the gravitational constant G instead of g in their equations. Overall, the conversation emphasizes the mathematical foundations necessary for analyzing oscillatory motion in gravitational fields.
Penny57
Messages
7
Reaction score
3
Homework Statement
Oscillation of bead with gravitating masses:
A bead of mass m slides without friction on a smooth rod along
the x axis. The rod is equidistant between two spheres of mass M.
The spheres are located at x = 0, y = ± a as shown, and attract the
bead gravitationally.
Find the frequency of small oscillations of the bead about the
origin.
Relevant Equations
U = m * g * h
U = -g * m * M (1/r1 + 1/r2)
U = (-2 * g * m * M) / sqrt (a^2 + x^2)
The relevant equations has been me working out the gravitational potential energy. I was told to take the derivative twice from here, but I do not understand why. It leads into a taylor series expansion, which seems excessive, but I was not informed on any other way to do it. Any advice would be greatly appreciated!
 
Physics news on Phys.org
Please post the Taylor series expansion of the potential energy about ##x=0##. It is not excessive. Just show it to second order. Then we'll talk about it and you will the reason for doing it. That's my advice.

On edit: Please use ##G## instead of ##g## in your expressions. Do you see why?
 
Taking the Taylor series expansion expansion about x = 0 led me to:
-(2 * G * m * M) / a + 1/2 * (2 * G * m * M) / a^3 * x^2
(note - is there a way to show fractions in a more viewable format?)

I also see why I should use G now, I had grown so accustomed to the formula the thought hadn't crossed my mind. Thank you for the correction!
I am realizing the second Taylor series expansion looks like the formula for a spring. I still don't know why it was decided to take the second derivative and use the Taylor series expansion - if I was asked to do this problem myself without any guidance, I don't know how I would arrive to the conclusion that those steps are necessary. What's a good way to think about why the solution is being approached in this way?

Edit since I wasn't super clear: The answer seems clear now. I would just not be able to replicate this process since I do not know why the second derivative is taken or what it represents, and same with the Taylor series expansion.
 
  • Like
Likes knightlyghost and haruspex
The potential is an even function, meaning that ##U(-x)=U(x)##. In other words, it it symmetric about the x-axis. Furthermore, because its first derivative vanishes at x = 0, the potential has an extremum (maximum or minimum) at x = 0. Finally, the second derivative is positive, which means that you have a minimum. Thus, for small displacements from x = 0, either to the left or to the right, you get a restoring force that is proportional to the displacement just like a spring-mass system as you already noticed.

So here is the big picture. A Taylor series of an even function (a) has a first order term that vanishes; (b) has a local minimum if the second derivative at the point where the first derivative vanishes is positive. So if you find an even function expressing a potential energy, as in this problem, Taylor expand and see that it has a positive second derivative at ##x_0## where its first derivative vanishes, then you know you have simple harmonic motion about ##x_0##. Furthermore, the frequency of oscillations is related to the value of the second derivative at ##x_0##.
 
I see - thank you for the help! I understand what you mean the more I read it and apply it to the problem. I have just recently learned Taylor series, so I was a bit confused on its applications. I have a more solid grasp on the derivative part of your explanation, but I'll likely understand Taylor series the more I use them. Thank you again!
 
You might wish to practice by considering the following application. You have a bead of mass ##m## that slides without friction on a ring of radius ##R##. The ring is oriented so that it has a diameter along the vertical direction, parallel to the acceleration of gravity. Find the period of small oscillations of the mass about the lowest point of the ring.

Comment 1
The motion of the mass is circular which is the same as if it were attached to a string to form a pendulum. You expect the period to be the same as that of a pendulum of length ##R##. This application shows you how to get the answer using Taylor series without recourse to Newtons's second law.

Comment 2
The equation of a circle is ##x^2+y^2=R^2.##
The potential energy function is ##U=mgy## and increases as ##y## increases.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top