MHB P-Adic Localization in Rational Numbers: A Proof of Local Subring Property

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Local
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $p$ be a prime.
We define $$R=\{m/n\in \mathbb{Q}\mid m,n\in \mathbb{Z} \text{ and } p\not\mid n\}$$

I want to show that $R$ is a local subring of $\mathbb{Q}$. To show that, do we have to show that there is a $I\subseteq R$ which satisfies the following conditions?
  1. $I$ is the only maximal right ideal of $R$
  2. $I$ is the only maximal left ideal of $R$
  3. $I$ is an ideal
  4. each element $a\in R-I$ is invertible
(Wondering)
 
Last edited by a moderator:
Physics news on Phys.org
Consider $I = pR$ and use condition 4 to prove $R$ is local.
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...