MHB P-Adic Localization in Rational Numbers: A Proof of Local Subring Property

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Local
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $p$ be a prime.
We define $$R=\{m/n\in \mathbb{Q}\mid m,n\in \mathbb{Z} \text{ and } p\not\mid n\}$$

I want to show that $R$ is a local subring of $\mathbb{Q}$. To show that, do we have to show that there is a $I\subseteq R$ which satisfies the following conditions?
  1. $I$ is the only maximal right ideal of $R$
  2. $I$ is the only maximal left ideal of $R$
  3. $I$ is an ideal
  4. each element $a\in R-I$ is invertible
(Wondering)
 
Last edited by a moderator:
Physics news on Phys.org
Consider $I = pR$ and use condition 4 to prove $R$ is local.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top