MHB P is the sum of 2 consecutive squares

  • Thread starter Thread starter alexmahone
  • Start date Start date
  • Tags Tags
    Squares Sum
Click For Summary
An odd prime \( p \) can be expressed as the sum of two consecutive squares, \( p = a^2 + (a+1)^2 \), if and only if it takes the form \( p = \frac{u^2 + 1}{2} \). The derivation shows that \( p = 2a^2 + 2a + 1 \) leads to \( 2p = (2a + 1)^2 + 1 \). This formulation holds true regardless of whether \( p \) is prime, as demonstrated with the example of \( a = 6 \), yielding \( p = 85 \), which is not prime. The conclusion is that the relationship between odd primes and sums of consecutive squares is valid under specific conditions, but the prime status of \( p \) is not a requirement. The discussion confirms the mathematical validity of the derived expressions.
alexmahone
Messages
303
Reaction score
0
Let $p$ be an odd prime.

Prove that $p$ is the sum of 2 consecutive squares i.e. $p=a^2+(a+1)^2$ if and only if $p$ has the form $p=\dfrac{u^2+1}{2}$.
 
Mathematics news on Phys.org
I think I got it.

$p=a^2+(a+1)^2=2a^2+2a+1$

$2p=4a^2+4a+2=(2a+1)^2+1$

$p=\dfrac{(2a+1)^2+1}{2}=\dfrac{u^2+1}{2}$ where $u=2a+1$

Could someone confirm? I didn't use the fact that $p$ is prime.
 
Alexmahone said:
I think I got it.

$p=a^2+(a+1)^2=2a^2+2a+1$

$2p=4a^2+4a+2=(2a+1)^2+1$

$p=\dfrac{(2a+1)^2+1}{2}=\dfrac{u^2+1}{2}$ where $u=2a+1$

Could someone confirm? I didn't use the fact that $p$ is prime.

above is true whether p is prime or not as you proved it

as an example a= 6

$p = a^2 + (a+1)^2 = 6^2+7^2 = 85 = \dfrac{1}{2}(13^2+1)$ and 85 is not prime
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 48 ·
2
Replies
48
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K