A Papapetrou transformation: Conditions to be satisfied to achieve transformation

julian
Science Advisor
Gold Member
Messages
857
Reaction score
361
TL;DR Summary
The Papapetrou transformation. Conditions to be satisfied to achieve requirements of transformation. My conditions don't match Chandrasekhar's conditions.
I'm looking at the Papapetrou transformation in Ch. 6, ##\S 52## of Chandrasekhar's book. He cf's Ch. 2, ##\S##11.I understand Ch. 2, ##\S##11. There he considers a coordinate transformation,

\begin{align*}
{x'}^1 = \phi (x^1,x^2) \qquad \text{and} \qquad {x'}^2 = \psi (x^1,x^2)
\end{align*}

which will reduce the contravariant form of the line element

\begin{align*}
ds^2 = g^{11} (dx_1)^2 + 2 g^{12} dx_1 dx_2 + g^{22} (dx_2)^2
\end{align*}

to diagonal form with equal coefficients for ##(dx_1)^2## and ##(dx_2)^2##. For a transformation to achieve this it is necessary and sufficient that

\begin{align*}
g^{'12} = g^{11} \phi_{,1} \psi_{,1} + 2 g^{12} (\phi_{,1} \psi_{,2} + \phi_{,2} \psi_{,1}) + g^{22} \phi_{,2} \psi_{,2} = 0
\end{align*}

\begin{align*}
g^{'11} - g^{'22} = g^{11} ({\phi_{,1}}^2 - {\psi_{,1}}^2) + 2 g^{12} (\phi_{,1} \phi_{,2} - \psi_{,1} \psi_{,2}) + g^{22} ({\phi_{,2}}^2 - {\psi_{,2}}^2) = 0
\end{align*}

I get all of this.In Ch. 6, ##\S##52, (b) The Papapetrou transformation, he is wanting to perform a coordinate transformation

\begin{align*}
(x^2,x^3) \rightarrow (\rho , z)
\end{align*}

such that

\begin{align*}
e^{2 \mu} [(dx_2)^2 + (dx_3)^2] \rightarrow f (\rho , z) [(d \rho)^2 + (dz)^2]
\end{align*}Regarding the possibility of making such a coordinate transformation, he cf's Ch. 2 ##\S##11. So I was thinking I should write

\begin{align*}
{x'}^2 = \rho (x^2,x^3) \qquad \text{and} \qquad {x'}^3 = z (x^2,x^3)
\end{align*}

where ##\rho## and ##z## are to be chosen so that the metric remains in diagonal form and with equal coefficients for ##(d \rho)^2## and ##(dz)^2##. For a transformation to achieve this it is necessary and sufficient that

\begin{align*}
g^{'23} = g^{22} \rho_{,2} z_{,2} + 2 g^{23} (\rho_{,2} z_{,3} + \rho_{,3} z_{,2}) + g^{33} \rho_{,3} z_{,3} = 0
\end{align*}

\begin{align*}
g^{'22} - g^{'33} = g^{22} ({\rho_{,2}}^2 - {z_{,2}}^2) + 2 g^{23} (\rho_{,2} \rho_{,3} - z_{,2} z_{,3}) + g^{33} ({\rho_{,3}}^2 - {z_{,3}}^2) = 0
\end{align*}

As ##g^{23} = 0## and ##g^{22} = g^{33}##, the first condition requires
\begin{align*}
\rho_{,2} z_{,2} + \rho_{,3} z_{,3} = 0
\end{align*}

As ##g^{23} = 0## and ##g^{22} = g^{33}##, the second condition requires

\begin{align*}
{\rho_{,2}}^2 - {z_{,2}}^2 = - {\rho_{,3}}^2 + {z_{,3}}^2
\end{align*}However, Chandrasekhar gets these conditions instead:

\begin{align*}
{\rho_{,2}}^2 + {z_{,2}}^2 & = {\rho_{,3}}^2 + {z_{,3}}^2
\nonumber \\
\rho_{,2} \rho_{,3} + z_{,2} z_{,3} & = 0
\end{align*}

How does Chandrasekhar arrive at these conditions?Are my conditions not necessary and sufficient conditions for the transformation to achieve the requirements I stated? Does Chandrasekhar have other requirements in mind? Chandrasekhar notes that his conditions are satisfied by ##\rho_{,2} = +z_{,3}## and ##\rho_{,3} = - z_{,2}##. I notice that my conditions are satisfied by these choices as well.
 
Physics news on Phys.org
julian said:
[...] Chandrasekhar's book. [...]
Which book? He's written quite a few.

Edit: Oh, I guess you mean "The Mathematical Theory of Black Holes" (1983).
Geez, I hate Chandrasekhar's conventions for chapter/section numbering.... (sigh)

Alas, I don't have time to give a detailed answer right now. I'll try later this week if no one else jumps in first. :oldfrown:
 
Last edited:
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...

Similar threads

Replies
4
Views
953
Replies
1
Views
930
Replies
3
Views
3K
Replies
6
Views
1K
Replies
8
Views
2K
Replies
5
Views
1K
Back
Top