- #1
dEdt
- 288
- 2
From the Wikipedia article on the Riemann curvature tensor:
The last sentence assumes that ##\tau_{sX}^{-1}\tau_{tY}^{-1}\tau_{sX}\tau_{tY}## returns Z back to x0. It isn't obvious to me that this should be true. My guess is that this is true because X and Y commute, but I can't think of a proof for this claim.
Suppose that X and Y are a pair of commuting vector fields. Each of these fields generates a pair of one-parameter groups of diffeomorphisms in a neighborhood of x0. Denote by τtX and τtY, respectively, the parallel transports along the flows of X and Y for time t. Parallel transport of a vector Z ∈ Tx0M around the quadrilateral with sides tY, sX, −tY, −sX is given by
[tex]\tau_{sX}^{-1}\tau_{tY}^{-1}\tau_{sX}\tau_{tY}Z.[/tex]
This measures the failure of parallel transport to return Z to its original position in the tangent space Tx0M.
The last sentence assumes that ##\tau_{sX}^{-1}\tau_{tY}^{-1}\tau_{sX}\tau_{tY}## returns Z back to x0. It isn't obvious to me that this should be true. My guess is that this is true because X and Y commute, but I can't think of a proof for this claim.