- #1
Rahul Shenoy
- 1
- 0
I am working on a problem, where I have arrived at the following nonlinear state space equation:
dx1/dt = x2;
dx2/dt = c11 x1 + c21x2 + c31x3 + c41x4 + c51x1x22;
dx3/dt = x4;
dx4/dt = c12 x1 + c22x2 + c32x3 + c42x4 + c52x1x22;
c11, c21, c31, c41, c51, c12, c22, c32, c42, c52 are all a function of a system parameter. I want to compute sensitivity of the system subject to parameter changes. The system has a stable equilibrium at (0,0,0,0) and I want to understand the affect of parameter changes on the stability. Can anyone suggest how I can approach this problem, as the system is nonlinear?
dx1/dt = x2;
dx2/dt = c11 x1 + c21x2 + c31x3 + c41x4 + c51x1x22;
dx3/dt = x4;
dx4/dt = c12 x1 + c22x2 + c32x3 + c42x4 + c52x1x22;
c11, c21, c31, c41, c51, c12, c22, c32, c42, c52 are all a function of a system parameter. I want to compute sensitivity of the system subject to parameter changes. The system has a stable equilibrium at (0,0,0,0) and I want to understand the affect of parameter changes on the stability. Can anyone suggest how I can approach this problem, as the system is nonlinear?