fantispug
- 101
- 0
Let's say we have a symmetric potential, in position representation V(x)=V(-x) and let P be the parity operator.
Then quite clearly PV=VP but I was told the stronger statement V=PV is not true, but I thought
V=\int_{-\infty}^{\infty} V\left|x\right\rangle\left\langle x \right| dx
(where I have used completeness and linearity of the integral... though I'm having second thoughts about linearity - can I just move the integral through V?)
V=\int_{-\infty}^{\infty} V(x)\left|x\right\rangle\left\langle x \right| dx
V=\int_{-\infty}^{\infty} V(-x)\left|x\right\rangle\left\langle x \right| dx
V=\int_{-\infty}^{\infty} (PV(x))\left|x\right\rangle\left\langle x \right| dx
V=\int_{-\infty}^{\infty} P(V(x)\left|x\right\rangle)\left\langle x \right| dx
V=\int_{-\infty}^{\infty} P(V\left|x\right\rangle)\left\langle x \right| dx
V=\int_{-\infty}^{\infty} (PV)\left|x\right\rangle\left\langle x \right| dx
V=(PV)
If V is not the same as PV, why not?
Cheers
Then quite clearly PV=VP but I was told the stronger statement V=PV is not true, but I thought
V=\int_{-\infty}^{\infty} V\left|x\right\rangle\left\langle x \right| dx
(where I have used completeness and linearity of the integral... though I'm having second thoughts about linearity - can I just move the integral through V?)
V=\int_{-\infty}^{\infty} V(x)\left|x\right\rangle\left\langle x \right| dx
V=\int_{-\infty}^{\infty} V(-x)\left|x\right\rangle\left\langle x \right| dx
V=\int_{-\infty}^{\infty} (PV(x))\left|x\right\rangle\left\langle x \right| dx
V=\int_{-\infty}^{\infty} P(V(x)\left|x\right\rangle)\left\langle x \right| dx
V=\int_{-\infty}^{\infty} P(V\left|x\right\rangle)\left\langle x \right| dx
V=\int_{-\infty}^{\infty} (PV)\left|x\right\rangle\left\langle x \right| dx
V=(PV)
If V is not the same as PV, why not?
Cheers