I Partial derivative is terms of Kronecker delta and the Laplacian operator

Safinaz
Messages
255
Reaction score
8
TL;DR Summary
How to write partial derivatives in terms of Kronecker delta and the Laplacian operator?
How can the following term:

## T_{ij} = \partial_i \partial_j \phi ##

to be written in terms of Kronecker delta and the Laplacian operator ## \bigtriangleup = \nabla^2 ##?

I mean is there a relation like:

## T_{ij} = \partial_i \partial_j \phi = ?? \delta_{ij} \bigtriangleup \phi.##

But what are ?? term

Any help is appreciated!
 
Last edited:
Physics news on Phys.org
It cannot.
 
Orodruin said:
It cannot.
So there is no any way to simplify ## \partial_i \partial_j \phi ## ?
 
Not really no. Not without knowing more. In some special cases, perhaps, but not as a general rule.

What is the context here?
 
Thread 'Why is there such a difference between the total cross-section data? (simulation vs. experiment)'
Well, I'm simulating a neutron-proton scattering phase shift. The equation that I solve numerically is the Phase function method and is $$ \frac{d}{dr}[\delta_{i+1}] = \frac{2\mu}{\hbar^2}\frac{V(r)}{k^2}\sin(kr + \delta_i)$$ ##\delta_i## is the phase shift for triplet and singlet state, ##\mu## is the reduced mass for neutron-proton, ##k=\sqrt{2\mu E_{cm}/\hbar^2}## is the wave number and ##V(r)## is the potential of interaction like Yukawa, Wood-Saxon, Square well potential, etc. I first...
Back
Top