Partial Derivative Simplification

Click For Summary
The simplification of the expression involving second partial derivatives is incorrect, as the second partial derivative operators cannot be treated as fractions with numerators and denominators. The discussion emphasizes that without additional information about the function A, the expression cannot be simplified further. A suggestion is made to test the proposed simplification with a counterexample to validate or refute it. The importance of understanding the nature of partial derivatives and their operations is highlighted. Overall, the simplification presented does not hold true under standard mathematical principles.
BlackMelon
Messages
43
Reaction score
7
Homework Statement
A is a function of x, y, and z. Simplify:
$$\frac{\partial^2A}{\partial x^2}+\frac{\partial^2A}{\partial y^2}$$
Relevant Equations
Simplify $$\frac{\partial^2A}{\partial x^2}+\frac{\partial^2A}{\partial y^2}$$
Hi there!

I would like to know if the following simplification is correct or not:
Let A be a function of x, y, and z

$$\frac{\partial^2A}{\partial x^2}+\frac{\partial^2A}{\partial y^2}$$
$$=\ \frac{\partial^2A\partial y^2+\partial^2A\partial x^2}{\partial x^2\partial y^2}$$
$$=\frac{\partial^2A\left(\partial y^2+\partial x^2\right)}{\partial x^2\partial y^2}$$
$$=\ \frac{\partial^2A\left(\partial z^2\right)}{\partial x^2\partial y^2}$$
$$=0\ \ \left(since\frac{\partial z^2}{\partial y^2}=0\right)$$

Thanks!
 
Physics news on Phys.org
What happens if A(x,y,z)=x2?

There has to be more to the problem than what you state.
 
  • Like
  • Informative
Likes hutchphd, Mark44 and BlackMelon
BlackMelon said:
Homework Statement: A is a function of x, y, and z. Simplify:
$$\frac{\partial^2A}{\partial x^2}+\frac{\partial^2A}{\partial y^2}$$
Relevant Equations: Simplify $$\frac{\partial^2A}{\partial x^2}+\frac{\partial^2A}{\partial y^2}$$

Hi there!

I would like to know if the following simplification is correct or not:
Let A be a function of x, y, and z

$$\frac{\partial^2A}{\partial x^2}+\frac{\partial^2A}{\partial y^2}
=\ \frac{\partial^2A\partial y^2+\partial^2A\partial x^2}{\partial x^2\partial y^2}$$

\dfrac{\partial^2 A}{\partial x^2} is not a fraction. \dfrac{\partial^2}{\partial x^2} is the second partial derivative operator with respect to x, keeping other variables constant. It does not have a "numerator" or "denominator" which you can manipulate separately in order to put a sum of such operators over a "common denominator". Without knowing more about A, there is nothing about the expression <br /> \frac{\partial^2 A}{\partial x^2} + \frac{\partial^2 A}{\partial y^2} that can be simplified.
 
  • Like
Likes hutchphd, Mark44 and BlackMelon
BlackMelon said:
Thanks!
Was this a formal assignment? (from where?)
Please do not miss the larger point (from @Frabjous) that a good way to check a proposed result is to try to create a counterexample. You only need one.....that is what makes the scientific method so powerful.
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...