MHB Partial Derivatives: Find $\frac{\partial^2{w}}{\partial{u}\partial{v}}$

Click For Summary
The discussion focuses on finding the mixed partial derivative \(\frac{\partial^2{w}}{\partial{u}\partial{v}}\) for the function \(w=f(x, y)\), where \(x=u+v\) and \(y=u-v\). The user applies the chain rule to derive the expression, ultimately showing that \(\frac{\partial^2{w}}{\partial{u}\partial{v}}=\frac{\partial^2{w}}{\partial{x^2}}-\frac{\partial^2{w}}{\partial{y^2}}\). The calculations involve taking derivatives with respect to \(u\) and \(v\) and simplifying the results. The user seeks confirmation of the correctness of their solution and potential improvements in formulation. The response indicates that the derivation appears correct and well-formulated.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $w=f(x, y)$ a two variable function and $x=u+v$, $y=u-v$.
Show that $$\frac{\partial^2{w}}{\partial{u}\partial{v}}=\frac{\partial^2{w}}{\partial{x^2}}-\frac{\partial^2{w}}{\partial{y^2}}$$

I have done the following:

We have $w(x(u,v), y(u, v))$.

From the chain rule we have: $$\frac{\partial{w}}{\partial{v}}=\frac{\partial{w}}{\partial{x}}\frac{\partial{x}}{\partial{v}}+\frac{\partial{w}}{\partial{y}}\frac{\partial{y}}{\partial{v}}=\frac{\partial{w}}{\partial{x}} \cdot 1+\frac{\partial{w}}{\partial{y}} \cdot (-1)=\frac{\partial{w}}{\partial{x}}-\frac{\partial{w}}{\partial{y}}$$

We apply again the chain rule, so:
$$\frac{\partial}{\partial{u}}\left (\frac{\partial{w}}{\partial{v}}\right )=\frac{\partial}{\partial{x}}\left (\frac{\partial{w}}{\partial{v}}\right ) \frac{\partial{x}}{\partial{u}}+\frac{\partial}{\partial{y}}\left (\frac{\partial{w}}{\partial{v}}\right )\frac{\partial{y}}{\partial{u}}=\frac{\partial}{\partial{x}}\left (\frac{\partial{w}}{\partial{x}}-\frac{\partial{w}}{\partial{y}}\right ) \cdot 1+\frac{\partial}{\partial{y}}\left (\frac{\partial{w}}{\partial{x}}-\frac{\partial{w}}{\partial{y}}\right ) \cdot 1\\ =\frac{\partial^2{w}}{\partial{x^2}}-\frac{\partial^2{w}}{\partial{x}\partial{y}}+\frac{\partial^2{w}}{\partial{x}\partial{y}}-\frac{\partial^2{w}}{\partial{y^2}}=\frac{\partial^2{w}}{\partial{x^2}}-\frac{\partial^2{w}}{\partial{y^2}}$$

Is it correct?? (Wondering)

Could I improve something at the formulation?? (Wondering)
 
Last edited by a moderator:
Physics news on Phys.org
Looks good to me. (Yes)
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K