MHB Partial Fraction Simplification

  • Thread starter Thread starter tmt1
  • Start date Start date
  • Tags Tags
    Fraction Partial
Click For Summary
To simplify the partial fraction expression, the multiplication of the binomials (Bx + C)(x + 3) needs to be performed. This results in Bx^2 + (3B + C)x + 3C. When combined with the other term (x^2 + 9), the overall expression becomes (B + 1)x^2 + (3B + C)x + (9 + 3C). This matches the textbook's formulation, confirming the derivation process. Understanding this multiplication is crucial for mastering partial fraction decomposition.
tmt1
Messages
230
Reaction score
0
I have this partial fraction:

$$ 18 = (x^2 + 9) + (Bx + C)(x + 3)$$

which the textbook says is equal to:

$$(B + 1)x^2 + (C + 3B)x + (9 + 3C)$$

But I don't follow this step. How do I derive this?
 
Mathematics news on Phys.org
Okay, we begin with:

$$\left(x^2+9\right)+(Bx+C)(x+3)$$

What to you get when you carry out the indicated multiplication of the two binomial expressions?
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K