MHB Partial fractions (5x^2+1)/[(3x+2)(x^2+3)]

mathlearn
Messages
331
Reaction score
0
Trouble here in the below partial fraction (Bug)

$\frac{5x^2+1}{(3x+2)(x^2+3)}$

One factor in the denominator is a quadratic expression

Split this into two parts A&B

$\frac{5x^2+1}{(3x+2)(x^2+3)}=\frac{A}{(3x+2)}+\frac{Bx+c}{(x^2+3)}$

$\frac{5x^2+1}{(3x+2)(x^2+3)}=\frac{A(x^2+3)}{(3x+2)}+\frac{Bx+c (3x+2)}{(x^2+3)}$

${5x^2+1}={A(x^2+3)}+{Bx+c (3x+2)}{}$

and cannot take it from here
 
Mathematics news on Phys.org
Hi mathlearn,

I believe you have a typo in your last line, it should be:
${5x^2+1}={A(x^2+3)}+(Bx+C) (3x+2)$

One way to move forward is to substitute $x=-2/3$, effectively zeroing the last term (which allows you to solve for $A$). Once we have $A$, unfortunately, we'll have to expand out all the terms and compare the coefficients of both sides of the equation.
 
Let's use a better method;

(5x^2+1)/(3x+2)(x^2+3) = A/(3x+2) + (Bx+C)/(x^2+3)

To find A,multiplying both sides of the equality by (3x+2) ;

(5x^2+1)/(x^2+3) =A + (3x+2)(Bx+C)/(x^2+3) (1)

Now,setting x=-2/3 or 3x+2=0,makes the expression on the right containing (3x+2) vanish,so(5(-2/3)^2+1)/((-2/3)^2+3) =A + 0 .Then,

A=29/31To find C,set x=0 in (1),so we get rid of b.Then,

1/3=29/31 +2C/3

So,c can be easily calculated.

To find b,plugging any number but -2/3 & 0 into x,say 1,

6/5=29/31 + 5(B+C)/4

We have found C,then B can be easily calculated.
 
Actually there are a number of mistakes- though probably mostly typos.

mathlearn said:
Trouble here in the below partial fraction (Bug)

$\frac{5x^2+1}{(3x+2)(x^2+3)}$

One factor in the denominator is a quadratic expression

Split this into two parts A&B

$\frac{5x^2+1}{(3x+2)(x^2+3)}=\frac{A}{(3x+2)}+\frac{Bx+c}{(x^2+3)}$
Okay.

$\frac{5x^2+1}{(3x+2)(x^2+3)}=\frac{A(x^2+3)}{(3x+2)}+\frac{Bx+c (3x+2)}{(x^2+3)}$
No, the fractions on the right must both have "$(x^2+ 3)(3x+ 2)$" as denominator and the final fraction should have numerator (Bx+c)(3x+ 2) not "Bx+ c(3x+ 2)".

\frac{5x^2+1}{(3x+2)(x^2+3)}=\frac{A(x^2+3)}{(3x+2)}+\frac{Bx+c (3x+2)}{(x^2+3)}$

${5x^2+1}={A(x^2+3)}+{Bx+c (3x+2)}{}$
Again that should be (Bx+ c)(3x+ 2).

and cannot take it from here
$5x^2+ 1= Ax^2+ 3A+ 3Bx^2+ 3cx+ 2Bx+ 2c$
$5x^2+ 0x+ 1= (A+ 3B)x^2+ (3c+ 2B)x+ (3A+ 2c)$
Since this is t0 be true for all x, "corresponding coefficients must be equal:
5= A+ 3B, 0= 3c+ 2B, and 1= 3A+ 2c

Subtract 3 times the second equation from twice the first:
10- 0= 2A+ 6B- 6c- 6B= 2A- 6c
Subtract 3(1= 3A+ 2c), 3= 9A- 6c from that:
7= -7A so A= -1. Then -3+ 2c= 1 so 2c= 4 and c= 2.
5= -1+ 3B so 3B= 6, B= 2.

A= -1, B= 2, and c= 2.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
2
Views
1K
Replies
2
Views
2K
Replies
5
Views
2K
Replies
4
Views
2K
Replies
2
Views
2K
Replies
10
Views
2K
Back
Top