Partial fractions (5x^2+1)/[(3x+2)(x^2+3)]

Click For Summary

Discussion Overview

The discussion revolves around the process of performing partial fraction decomposition on the expression $\frac{5x^2+1}{(3x+2)(x^2+3)}$. Participants explore various methods to break down the expression into simpler fractions, addressing both the algebraic manipulations and potential errors in the setup.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant presents the initial setup for partial fraction decomposition but expresses difficulty in proceeding further.
  • Another participant identifies a potential typo in the original setup and suggests substituting a specific value to solve for one of the constants.
  • A different approach is proposed, detailing the steps to isolate constants A, B, and C through substitution and coefficient comparison.
  • One participant points out several mistakes in the algebraic setup, emphasizing the need for correct notation and the proper arrangement of terms in the fractions.
  • Further elaboration on the coefficient comparison method is provided, leading to specific values for A, B, and C, although the correctness of these values is not universally accepted.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the correct approach or the values of the constants involved in the decomposition. There are multiple competing views and methods presented throughout the discussion.

Contextual Notes

Some participants note potential typos and errors in earlier posts, indicating that the discussion may be influenced by these inaccuracies. The methods proposed rely on specific algebraic manipulations that may not be universally agreed upon.

mathlearn
Messages
331
Reaction score
0
Trouble here in the below partial fraction (Bug)

$\frac{5x^2+1}{(3x+2)(x^2+3)}$

One factor in the denominator is a quadratic expression

Split this into two parts A&B

$\frac{5x^2+1}{(3x+2)(x^2+3)}=\frac{A}{(3x+2)}+\frac{Bx+c}{(x^2+3)}$

$\frac{5x^2+1}{(3x+2)(x^2+3)}=\frac{A(x^2+3)}{(3x+2)}+\frac{Bx+c (3x+2)}{(x^2+3)}$

${5x^2+1}={A(x^2+3)}+{Bx+c (3x+2)}{}$

and cannot take it from here
 
Physics news on Phys.org
Hi mathlearn,

I believe you have a typo in your last line, it should be:
${5x^2+1}={A(x^2+3)}+(Bx+C) (3x+2)$

One way to move forward is to substitute $x=-2/3$, effectively zeroing the last term (which allows you to solve for $A$). Once we have $A$, unfortunately, we'll have to expand out all the terms and compare the coefficients of both sides of the equation.
 
Let's use a better method;

(5x^2+1)/(3x+2)(x^2+3) = A/(3x+2) + (Bx+C)/(x^2+3)

To find A,multiplying both sides of the equality by (3x+2) ;

(5x^2+1)/(x^2+3) =A + (3x+2)(Bx+C)/(x^2+3) (1)

Now,setting x=-2/3 or 3x+2=0,makes the expression on the right containing (3x+2) vanish,so(5(-2/3)^2+1)/((-2/3)^2+3) =A + 0 .Then,

A=29/31To find C,set x=0 in (1),so we get rid of b.Then,

1/3=29/31 +2C/3

So,c can be easily calculated.

To find b,plugging any number but -2/3 & 0 into x,say 1,

6/5=29/31 + 5(B+C)/4

We have found C,then B can be easily calculated.
 
Actually there are a number of mistakes- though probably mostly typos.

mathlearn said:
Trouble here in the below partial fraction (Bug)

$\frac{5x^2+1}{(3x+2)(x^2+3)}$

One factor in the denominator is a quadratic expression

Split this into two parts A&B

$\frac{5x^2+1}{(3x+2)(x^2+3)}=\frac{A}{(3x+2)}+\frac{Bx+c}{(x^2+3)}$
Okay.

$\frac{5x^2+1}{(3x+2)(x^2+3)}=\frac{A(x^2+3)}{(3x+2)}+\frac{Bx+c (3x+2)}{(x^2+3)}$
No, the fractions on the right must both have "$(x^2+ 3)(3x+ 2)$" as denominator and the final fraction should have numerator (Bx+c)(3x+ 2) not "Bx+ c(3x+ 2)".

\frac{5x^2+1}{(3x+2)(x^2+3)}=\frac{A(x^2+3)}{(3x+2)}+\frac{Bx+c (3x+2)}{(x^2+3)}$

${5x^2+1}={A(x^2+3)}+{Bx+c (3x+2)}{}$
Again that should be (Bx+ c)(3x+ 2).

and cannot take it from here
$5x^2+ 1= Ax^2+ 3A+ 3Bx^2+ 3cx+ 2Bx+ 2c$
$5x^2+ 0x+ 1= (A+ 3B)x^2+ (3c+ 2B)x+ (3A+ 2c)$
Since this is t0 be true for all x, "corresponding coefficients must be equal:
5= A+ 3B, 0= 3c+ 2B, and 1= 3A+ 2c

Subtract 3 times the second equation from twice the first:
10- 0= 2A+ 6B- 6c- 6B= 2A- 6c
Subtract 3(1= 3A+ 2c), 3= 9A- 6c from that:
7= -7A so A= -1. Then -3+ 2c= 1 so 2c= 4 and c= 2.
5= -1+ 3B so 3B= 6, B= 2.

A= -1, B= 2, and c= 2.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K