Undergrad Partition function of quantum mechanics

Click For Summary
In quantum mechanics, the partition function Z[j] relates to the path integral formulation, allowing calculation of propagators between points through the expression involving the operator O. The thermodynamic partition function Z[β] connects to free energy and average energy calculations, highlighting the relationship between heat addition and enthalpy change in gases. While the mathematical link between quantum and thermodynamic partition functions exists, it lacks a profound physical connection, although it is crucial for many-body quantum field theory in thermal equilibrium. The imaginary-time formulation transforms time into an imaginary component, leading to periodic or antiperiodic boundary conditions for fields. This framework allows for similar Feynman rules in perturbation theory, adapted for thermal contexts.
PGaccount
Messages
85
Reaction score
25
In quantum mechanics, we have the partition function Z[j] = e-W[j] = ∫ eiS+ jiOi. The propagator between two points 1 and 2 can be calculated as

## \frac{\delta}{\delta j_1}\frac{\delta}{\delta j_2} Z = \langle O_1 O_2 \rangle##

The S in the path integral has been replaced by S → S + jiOi. Similarly we have what is also called the partition function in thermodynamics, Z[β] = e-F = tr e-βH, where F = E - TS is the free energy. The average energy can be calculated as

## \langle E \rangle = \frac{\partial Z}{\partial \beta} ##

When you add heat to a gas at constant pressure, the change in the enthalpy H = U + PV is equal to the heat added. The gas has to expand to keep the pressure constant. The work PdV done by this expansion is automatically accounted for by the definition of H, which is analogous to the above formula for the transformation of S. What is the connection between these two types of partition functions?
 
Physics news on Phys.org
The connection is mathematical, but I don't think that there is a deep physical connection. The mathematical connection is sometimes expressed concisely by saying that inverse temperature is an imaginary time.
 
To the contrary this similarity is crucial for many-body quantum field theory in thermal equilibrium. It's used in the socalled imaginary-time or Matsubara formulation of thermal field theory. The only difference to the vacuum case is that time becomes purely imaginary, ##t=-\mathrm{i} \tau## with ##\tau \in (0,\beta)## with ##\beta=1/(k_{\text{B}} t)## and the fields are subject to periodic (bosons) or antiperiodic (fermions) boundary conditions. You get the same Feynman rules for perturbation theory with some changes compared to the vacuum case: Instead of energy integrals you have sums over the Matsubara frequencies ##\omega_k=2 \pi k_{\text{B}} T k## (bosons) or ##\omega_k = \pi(2 k+1) k_{\text{B}} T## with ##k \in \mathbb{Z}## (I've chosen natural units with ##\hbar=c=1##).

For details (relativistic thermal QFT), see

https://itp.uni-frankfurt.de/~hees/publ/off-eq-qft.pdf
 
  • Like
Likes dextercioby
Time reversal invariant Hamiltonians must satisfy ##[H,\Theta]=0## where ##\Theta## is time reversal operator. However, in some texts (for example see Many-body Quantum Theory in Condensed Matter Physics an introduction, HENRIK BRUUS and KARSTEN FLENSBERG, Corrected version: 14 January 2016, section 7.1.4) the time reversal invariant condition is introduced as ##H=H^*##. How these two conditions are identical?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
988
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
980
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 15 ·
Replies
15
Views
3K