I Pauli matrices and shared eigenvectors

Sunny Singh
Messages
19
Reaction score
1
TL;DR Summary
For a spin 1/2 particle, why does Sx, Sy and Sz don't share the complete eigenspace even though all of them commute with S^2
We know that S2 commutes with Sz and so they share their eigenspace. Now since S2 also commutes with Sx, as per my understanding, the eigenvectors of S2 and Sz should also be the eigenvectors of Sx. But since the paulic matrices σx and σy are not diagonlized in the eigenbasis of S2, it is clear that S2 and Sx don't share their eigenspace even though they commute with each other. How is that possible? what am i missing?
 
Physics news on Phys.org
To have common eigenspaces we need that all commute with each other. Every matrix commutes with ##I##, but that doesn't mean all matrices have the same eigenspace. And the ##S_{xyz}## do not commute.
 
  • Like
Likes vanhees71 and Sunny Singh
Sunny Singh said:
We know that S2 commutes with Sz and so they share their eigenspace.

Yes.

Sunny Singh said:
since S2 also commutes with Sx, as per my understanding, the eigenvectors of S2 and Sz should also be the eigenvectors of Sx.

Your understanding is incorrect. S2 and Sx share an eigenspace, but it's a different eigenspace from the one shared by S2 and Sz. The two eigenspaces must be different because Sx does not commute with Sz.
 
  • Like
Likes vanhees71 and Sunny Singh
To say it in another way, commutativity is not transitive. ##[A,B] = 0## and ##[B,C]=0## does not imply that ##[A,C]=0##.
 
  • Like
Likes vanhees71
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Back
Top