MHB Paul's question at Yahoo Answers regarding a 3rd order linear homogeneous ODE

AI Thread Summary
The discussion centers on solving the third-order linear homogeneous ordinary differential equation (ODE) given by y''' - 8y = 0. The characteristic equation derived from this ODE is r^3 - 8 = 0, which factors to (r - 2)(r^2 + 2r + 4) = 0. The roots of the equation are identified as r = 2 and r = -1 ± i√3. Consequently, the general solution to the ODE is expressed as y(x) = c1e^(2x) + e^(-x)(c2cos(√3x) + c3sin(√3x)). This solution incorporates both real and complex roots, reflecting the behavior of the system described by the ODE.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Differential equations factoring?

Find the general solution to the following

y'''-8y=0

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Paul,

We are given to solve:

$$y'''-8y=0$$

The associated characteristic equation is:

$$r^3-8=(r-2)(r^2+2r+4)=0$$

Hence, the roots are:

$$r=2,\,-1\pm i\sqrt{3}$$

and so the solution is:

$$y(x)=c_1e^{2x}+e^{-x}(c_2\cos(\sqrt{3}x)+c_3\sin(\sqrt{3}x))$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top