MHB Did I Calculate the Perimeter of A Sector Correctly?

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Perimeter
AI Thread Summary
The discussion revolves around calculating the perimeter of a sector with a radius of 5 inches and an angle of 30°. The initial calculation yielded a perimeter of 10.05 inches, which was incorrect. The correct formula involves converting the angle to radians and applying it properly, resulting in a perimeter of 12.62 inches. The error was identified in the computation method used for the angle conversion. The final confirmation shows that the correct perimeter is indeed 12.62 inches.
mathdad
Messages
1,280
Reaction score
0
A sector has the following:

radius = 5 inches

angle = 30°

I was told to use the formula in the picture.

My answer is P = 10.05 inches.

The book's answer is P = 12.62 inches.

Am I using the right formula?

View attachment 7891
 

Attachments

  • sDraw_2018-03-02_01-42-29.png
    sDraw_2018-03-02_01-42-29.png
    9.9 KB · Views: 105
Mathematics news on Phys.org
RTCNTC said:
A sector has the following:

radius = 5 inches

angle = 30°

I was told to use the formula in the picture.

My answer is P = 10.05 inches.

The book's answer is P = 12.62 inches.

Am I using the right formula?

It looks like you have performed this computation: $(2 \pi / 360) (30)(2\pi / 360)(5) + (2)(5)$ instead of $(2 \pi / 360) (30)(5) + (2)(5)$

Remember: $\theta$ in degrees is equal to $\theta \cdot \dfrac{2\pi}{360}$ (or simply $\theta \cdot \dfrac{\pi}{180}$) in radians.
 
I converted 30° to radians before using the formula. This was my error.

P = (30/360) • (2π)(5) + 2(5)

P = (1/12)((10π) + 10

P = 12.62 inches

I got it.
 
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top