MHB Permutation question concerning cycle shapes

Confusedalways
Messages
4
Reaction score
0
Consider the subset of $S_4$ defined by

$$K_4=\{(1)(2)(3)(4),(12)(34),(13)(24),(14)(23)\}$$

Show that for all $f \in K_4$ and all $h \in S_4$, we have $h^{-1}fh \in K_4$

I showed all the possible cycle shapes of h and am trying to show that $h^{-1}fh$ must always have cycle shape $(2,2)$, excluding the case of identity permutation.

Just don't know where to go from here
 
Last edited by a moderator:
Physics news on Phys.org
Hi, Confusedalways! Welcome. (Wave)

You're on the right track. Consider the following fact. If $\sigma = (a_1 \cdots a_r)$ is a cycle in $S_n$ and $\tau\in S_n$, then $\tau \sigma \tau^{-1} = (\tau(a_1)\cdots \tau(a_r))$. Take for instance $(12)(34)$. For all $h\in S_4$, $$h(12)(34)h^{-1} = h(12)h^{-1}h(34)h^{-1} = (h(1)\;h(2))\,(h(3)\;h(4))$$

so $h(12)(34)h^{-1}$ has cycle structure $(2,2)$. The same argument applies to the others.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...

Similar threads

Back
Top