DarMM
Science Advisor
Gold Member
- 2,369
- 1,408
Well according to QFT in general states don't have a particle decomposition. Of course there are regimes where it is an excellent approximation, that's why we can use QM where particle number is well-defined.
However according to work on field theory by Haag, Ruelle and others in general this picture is not possible and in general we can only work with the notion of number expectation values for asymptotically placed probes. Steinmann in his monograph "Perturbative Quantum Electrodynamics and Axiomatic Field Theory" discusses this, as does Haag in his "Local Quantum Physics", as well as Araki in Chapter 5 of his "Mathematical Theory of Quantum Fields". Particles are only really well defined as clicks in appropriate detectors. Araki uses the phrase "Particle Counter Observable", Steinmann "Particle Probe".
Even then the asymptotic particle states won't definitively lead to ##N## clicks. So in the most general case it is hard to decompose quantum field theoretic states into being combinations of particle states.
Ultimately this just means QFT doesn't have particles as a fundamental notion. I don't see anything that would make you say a bacteria is just a click in a detector, although that combined with "empiricism" sounds like it's heading into a philosophical discussion which isn't my aim. It's just a statement about how particles are defined in QFT in the most general case. Going from "In QFT particles seem to be associated with asymptotically placed detectors, resulting in a count distribution centered around ##N##, an integer we call the particle number" to "bacteria aren't real" seems like a long mostly philosophical discussion.
However according to work on field theory by Haag, Ruelle and others in general this picture is not possible and in general we can only work with the notion of number expectation values for asymptotically placed probes. Steinmann in his monograph "Perturbative Quantum Electrodynamics and Axiomatic Field Theory" discusses this, as does Haag in his "Local Quantum Physics", as well as Araki in Chapter 5 of his "Mathematical Theory of Quantum Fields". Particles are only really well defined as clicks in appropriate detectors. Araki uses the phrase "Particle Counter Observable", Steinmann "Particle Probe".
Even then the asymptotic particle states won't definitively lead to ##N## clicks. So in the most general case it is hard to decompose quantum field theoretic states into being combinations of particle states.
Ultimately this just means QFT doesn't have particles as a fundamental notion. I don't see anything that would make you say a bacteria is just a click in a detector, although that combined with "empiricism" sounds like it's heading into a philosophical discussion which isn't my aim. It's just a statement about how particles are defined in QFT in the most general case. Going from "In QFT particles seem to be associated with asymptotically placed detectors, resulting in a count distribution centered around ##N##, an integer we call the particle number" to "bacteria aren't real" seems like a long mostly philosophical discussion.