Photon Entanglement: Identifying & Using an Entangled Pair

  • Context: Undergrad 
  • Thread starter Thread starter RobbyQ
  • Start date Start date
  • Tags Tags
    Entanglement Photons
Click For Summary
SUMMARY

This discussion focuses on the identification and practical use of entangled photon pairs generated by a Parametric Down Converter (PDC). When violet photons (400nm) are sent into the PDC, they produce two deep red photons, each with half the energy of the original. The entangled pairs can be identified by filtering out violet photons, ensuring that only the red photons are detected. To associate two entangled photons from a larger pool, one can reduce light intensity to allow for individual photon detection, and the shared quantum state can be measured using polarization detectors in a Bell inequality test, specifically the CHSH inequality.

PREREQUISITES
  • Understanding of quantum mechanics principles, particularly photon entanglement.
  • Familiarity with Parametric Down Conversion (PDC) techniques.
  • Knowledge of Bell inequality tests and their significance in quantum physics.
  • Experience with photon detection methods and timing analysis.
NEXT STEPS
  • Research the mechanics of Parametric Down Conversion (PDC) in detail.
  • Learn about the Bell inequality tests, focusing on the CHSH inequality and its applications.
  • Explore photon detection techniques and timing analysis for entangled photons.
  • Investigate practical applications of entangled photons in quantum communication and computing.
USEFUL FOR

Quantum physicists, optical engineers, and researchers in quantum information science will benefit from this discussion, particularly those working with entangled photons and their applications in experimental setups.

RobbyQ
Messages
32
Reaction score
11
In this video how are the entangled photons later used and actually identified as an entangled pair amongst billions of others.

Also does he really mean the photon is split or is the quantised energy split with half frequencies?
 
Physics news on Phys.org
He is using a "Parametric Down Converter" (PDC). So if you send violet photons (400nm) into this PDC
and all goes well you get two deep red photons coming out. The violet photon "splits" into two red photons, each with half the energy.

The photon pairs that are entangled are most readily identified as the red ones coming from the device. So if you put a filter on the output that blocks all violet photons, all of the photons emitted from the device will be the entangled ones.
 
  • Like
Likes   Reactions: vanhees71 and RobbyQ
.Scott said:
He is using a "Parametric Down Converter" (PDC). So if you send violet photons (400nm) into this PDC
and all goes well you get two deep red photons coming out. The violet photon "splits" into two red photons, each with half the energy.

The photon pairs that are entangled are most readily identified as the red ones coming from the device. So if you put a filter on the output that blocks all violet photons, all of the photons emitted from the device will be the entangled ones.
Thanks. But how do you associate 2 entangled photons out of the whole bucket load of entangled photons. And how do they measure the shared quantum state of 2 entangled photons and put it to practical use once there is a state collapse from observation?
 
RobbyQ said:
Thanks. But how do you associate 2 entangled photons out of the whole bucket load of entangled photons.
The pair of photons will be emitted at the same time. If you need to "associate" them, one way is to dim the light intensity down to slow the average rate that the photons are emitted. If the time between photon pairs is long enough (say about a nanosecond), then you are able to detect and count individual photons.

RobbyQ said:
And how do they measure the shared quantum state of 2 entangled photons and put it to practical use once there is a state collapse from observation?
If demonstrating the Bell inequality is considered a "practical use", then direct each photon from the pair to a separate polarization detector. The entire set up is described here: Bell Inequality Test
 
  • Like
Likes   Reactions: vanhees71 and RobbyQ
RobbyQ said:
Thanks. But how do you associate 2 entangled photons out of the whole bucket load of entangled photons. And how do they measure the shared quantum state of 2 entangled photons and put it to practical use once there is a state collapse from observation?
Just to add to @.Scott ‘s correct answer: the pair is entangled if they are detected within a specific coincidence time window, let’s say 10 nanoseconds. Note that the timing is adjusted for the relative length each one travels. Commonly in normal situations, only one pair is seen in any time window regardless of laser intensity because only 1 in perhaps 10 million down converts.

In many PDC setups, the split photons veer off at a slight angle while the rest go straight ahead. That makes it possible to distinguish them as well.

The fidelity of the detected pairs is checked by performing a Bell test. A common version is called a CHSH inequality which yields an S value which must be above 2, higher means better quality. Typical values are 2.4 and have experimental accuracy to 4 or more standard deviations.

Once you have a good source, you can perform other experiments.
 
  • Like
Likes   Reactions: vanhees71

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 58 ·
2
Replies
58
Views
5K
  • · Replies 18 ·
Replies
18
Views
5K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 41 ·
2
Replies
41
Views
6K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K