- 24,488
- 15,057
You can check this for yourself. You just need to think about what the PBS does. It's (thinking about an idealized lossless device again) another unitary transformation, when acting on the polarization states. What it does is simply to entangle the polarization states H/V to the photon momentum: One state goes through the other is reflected to 90 degrees, i.e., you haveJamesPaylow said:Seems to be some disagreement on whether the PBS breaks entanglement or not, but let's just assume the detectors also interact before the polarizer in Path A. So if the PBS doesn't break entanglement the detectors at least will.
$$\hat{U}_{\text{PBS}} |H, \vec{p}_{\text{in}} \rangle = |H,\vec{p}_{\text{refl}} \rangle,$$ $$\hat{U}_{\text{PBS}} |V, \vec{p}_{\text{in}} \rangle = |V,\vec{p}_{\text{in}} \rangle.$$
So the two-photon state when one photon went through the polarizer and the other through the HWP and the PBS is ##-|D \rangle \otimes |V,\vec{p}_{\text{in}}## (which is not an entangled state, because it's a product state). Since in the direction ##\vec{p}_{\text{in}}## if Detector A detects the its photon then for sure Detector B2 clicks.