sophiecentaur
Science Advisor
Homework Helper
- 30,207
- 7,422
Maui said:But in practice there is something special in that photons at 200 nm are already in the UV portion of the EM field. Ordinary light microscopes hit the diffraction limit of visible light just above the 200 nm limit or at 1 PHz. AFAIK 200-300 nm is exactly the diffraction limit of visible light.
What you seem to be talking about is the probability amplitude of finding an electron which is different from photons wavelength. Or are you saying they are related?
This seems to imply that my impression was correct in stating that -
Different parts of the Em spectrum(you mean?) will diffract differently for a given obstruction, of course; their wavelengths are different and so the structure is a different size in wavelengths. Also, the energy of the photons will be different so the effect of the material may be different (absorption / refractive index etc.) . But what has that got to do with the Quote "Width".
When I use the term probability, I mean that the classical optics of diffraction (the pattern) give the probability that photons will be detected in different locations (the light and dark areas). But this has nothing to do with the 'size' of the photon.
Try reading Cthugha's last post if you want to go further than the elementary level.