Physical interpretation of this coherent state

Click For Summary

Discussion Overview

The discussion revolves around the physical interpretation of coherent states in quantum mechanics, specifically focusing on the quantum harmonic oscillator. Participants explore the mathematical properties of coherent states, their eigenvalues, and the implications for position and momentum representations.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • One participant demonstrates that the coherent state ##|\alpha\rangle## is an eigenvector of the lowering operator ##A## with eigenvalue ##\alpha##, using operator identities and properties of the vacuum state.
  • The same participant calculates the inner product of two coherent states, concluding that ##|\langle \alpha | \beta \rangle|^2 = e^{|\alpha - \beta|^2}##, indicating that the set of coherent states spans the space.
  • Another participant suggests that to understand the physical interpretation of the mean value of momentum, one should consider the position and momentum representations of coherent states, referencing external sources like textbooks and Wikipedia.
  • A different participant questions whether the oscillatory behavior of position and momentum wavefunctions can be inferred without further calculations, based on the problem sheet's suggestion.
  • Another participant introduces Ehrenfest's theorem, noting that the expectation values of position and momentum for coherent states follow the same equations of motion as classical harmonic oscillators, emphasizing their minimal uncertainty properties.

Areas of Agreement / Disagreement

Participants express differing views on the necessity of further calculations to understand the classical-like behavior of coherent states, with some advocating for reliance on established theorems and others seeking explicit calculations.

Contextual Notes

There are unresolved assumptions regarding the interpretation of the mean value of momentum in relation to the imaginary part of ##\alpha##, and the discussion does not reach a consensus on the necessity of additional calculations for understanding the dynamics of coherent states.

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
Given the usual raising & lowering operators ##A^{\dagger}## & ##A## for a quantum harmonic oscillator, consider a coherent state ##|\alpha\rangle \equiv e^{\alpha A^{\dagger} - \bar{\alpha} A} |0\rangle##. I first check that ##|\alpha\rangle## is an eigenvector of ##A##. I already proved that if ##X##, ##Y## commute with ##[X,Y]## then ## e^{X+Y} = e^{X} e^{Y} e^{-\frac{1}{2}[X,Y]}##, which is applicable here because both ##A^{\dagger}## & ##A## clearly commute with ##[A^{\dagger}, A] = 1##, therefore\begin{align*}
|\alpha \rangle &= e^{\alpha A^{\dagger}} e^{-\bar{\alpha} A} e^{-\frac{1}{2}[\alpha A^{\dagger},-\bar{\alpha} A]} |0\rangle = e^{\frac{1}{2}|\alpha|^2} e^{\alpha A^{\dagger}} |0\rangle
\end{align*}where I used that ##e^{-\bar{\alpha} A}|0 \rangle = (1 - \bar{\alpha} A + \dots)|0\rangle = |0 \rangle##. Upon application of ##A##,\begin{align*}
A|\alpha\rangle = e^{\frac{1}{2}|\alpha|^2} (A e^{\alpha A^{\dagger}}) |0 \rangle = e^{\frac{1}{2}|\alpha|^2} ([A , e^{\alpha A^{\dagger}}] + e^{\alpha A^{\dagger}} A) |0 \rangle &= e^{\frac{1}{2}|\alpha|^2} (\alpha e^{\alpha A^{\dagger}} + e^{\alpha A^{\dagger}} A) |0 \rangle \\
&= \alpha e^{\frac{1}{2}|\alpha|^2} e^{\alpha A^{\dagger}} |0\rangle \\
&= \alpha |\alpha \rangle
\end{align*}which means that ##|\alpha \rangle## is of eigenvalue ##\alpha##. I make use of a similar operator identity ##e^X e^Y = e^Y e^X e^{[X,Y]}## to calculate the inner product of two general states:\begin{align*}
\langle \alpha | \beta \rangle = e^{\frac{1}{2} (|\alpha|^2 + |\beta|^2)}\langle 0 | e^{\bar{\beta} A} e^{\alpha A^{\dagger}}| 0 \rangle &= e^{\frac{1}{2} (|\alpha|^2 + |\beta|^2)}\langle 0 | e^{\alpha A^{\dagger}} e^{\bar{\beta} A} e^{[\bar{\beta} A, \alpha A^{\dagger}]} | 0 \rangle \\
&= e^{\frac{1}{2}(|\alpha|^2 + |\beta|^2)}e^{-2\alpha \bar{\beta}} \langle 0 | e^{\alpha A^{\dagger}} e^{\bar{\beta} A} | 0 \rangle \\
&= e^{\frac{1}{2}(|\alpha|^2 -2\alpha \bar{\beta} + |\beta|^2))}
\end{align*}where I used the fact that ##\langle 0 | e^{\alpha A^{\dagger}} \leftrightarrow e^{\bar{\alpha} A} |0\rangle##. It is therefore also the case that ##|\langle \alpha | \beta \rangle|^2 = e^{|\alpha - \beta|^2}##, that the set ##\{ |\alpha \rangle \}_{\alpha \in \mathbf{C}}## spans the space and that one can select a basis from a suitable subset of ##\{ |\alpha \rangle \}_{\alpha \in \mathbf{C}}##.

To consider the physical interpretation of ##|\alpha(t) \rangle## for a general complex ##\alpha \in \mathbf{C}##, it is advised to calculate ##\langle \alpha | P | \alpha \rangle##,\begin{align*}
\langle \alpha | P | \alpha \rangle = \frac{i}{\sqrt{2}} \langle \alpha | (A^{\dagger} - A) | \alpha \rangle &= \frac{i}{\sqrt{2}} \langle \alpha | (\bar{\alpha} - \alpha) |\alpha \rangle \\
&= \frac{i}{\sqrt{2}} (\bar{\alpha} - \alpha) \\
&= \sqrt{2} \mathrm{Im}(\alpha)
\end{align*}How am I supposed to interpret that the mean value of the momentum is proportional to the imaginary part of ##\alpha##? Also, how would I use this result to describe, qualitatively, how the position and momentum space wavefunctions evolve (I already worked out that ##|\alpha(t) \rangle = e^{-i\omega t/2} | e^{-i\omega t} \alpha \rangle##?
 
Last edited:
  • Like
Likes   Reactions: vanhees71
Physics news on Phys.org
Thanks for the link. Is there a way to see that the position and momentum basis wavefunctions oscillate like in a classical system without further calculation apart from the OP? I only ask because my problem sheet suggests that it is not necessary to work anything else out explicitly.
 
  • Like
Likes   Reactions: vanhees71
You can refer to Ehrenfest's theorem. Since the harmonic oscillator has a linear set of equations of motion for ##x## and ##p## the expectation values fulfill precisely the same equations of motion as the classical harmonic oscillator. A coherent state is one of minimal uncertainty product, ##\Delta x \Delta p=\hbar/2##, and thus are closest to a classical description of the system, especially for large ##|\alpha|##.
 
  • Like
  • Informative
Likes   Reactions: Demystifier and ergospherical

Similar threads

  • · Replies 1 ·
Replies
1
Views
773
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 26 ·
Replies
26
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K